首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2020年   1篇
  2015年   1篇
  2011年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Mechanical analysis on rocket propellants   总被引:2,自引:0,他引:2  
The mechanical properties of solid rocket propellants are very important for good functioning of rocket motors. During use and storage the mechanical properties of rocket propellants are changing, due to chemical and mechanical influences such as thermal reactions, oxidation reactions or vibrations. These influences can result in malfunctioning, leading to an unwanted explosion of the rocket motor. Most of modern rocket propellants consist of a polymer matrix (i.e. HTPB) filled with a crystalline material (i.e. AP, AN). However, the more conventional double base propellants consist of a solid gel matrix with additives, such as stabilizers. Both materials show a mechanical behaviour, quite similar to that of general polymers. To describe the material behaviour of both propellants a linear visco-elastic theory is often used to describe the mechanical behaviour for small deformations. Because the time-temperature dependency is also valid for these materials a mastercurve can be constituted. With this mastercurve the response properties (stiffness) under extreme conditions can be determined. At TNO-PML a mastercurve of a double base propellant was constituted using dynamical mechanical analysis (DMA) and compared with a mastercurve reduced from conventional (static) stress relaxation tests. The mechanical properties of this double base propellant determined by DMA were compared with conventional (quasi-static) tensile test results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
We describe the development of TMTH-SulfoxImine (TMTHSI) as a superior click reagent. This reagent combines a great reactivity, with small size and low hydrophobicity and compares outstandingly with existing click reagents. TMTHSI can be conveniently functionalized with a variety of linkers allowing attachment of a diversity of small molecules and (peptide, nucleic acid) biologics.

TMTHSI was developed as new reagent for strain-promoted azide–alkyne cycloaddition reactions, enabling connection of a diversity of small to large molecular constructs.  相似文献   
3.
4.
In view of glycomics studies in plants, it is important to have sensitive tools that allow one to analyze and characterize the N-glycans present on plant proteins in different species. Earlier methods combined plant-based sample preparations with CE-LIF N-glycan analysis but suffered from background contaminations, often resulting in non-reproducible results. This publication describes a reproducible and sensitive protocol for the preparation and analysis of plant N-glycans, based on a combination of the 'in-gel release method' and N-glycan analysis on a multicapillary DNA sequencer. Our protocol makes it possible to analyze plant N-glycans starting from low amounts of plant material with highly reproducible results. The developed protocol was validated for different plant species and plant cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号