首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   9篇
  国内免费   5篇
化学   35篇
晶体学   4篇
力学   1篇
数学   2篇
物理学   12篇
  2023年   1篇
  2022年   13篇
  2021年   5篇
  2020年   6篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2004年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有54条查询结果,搜索用时 46 毫秒
1.
Reduced graphene oxide (RGO)‐supported Cu–Cu2O nanocomposite material (Cu‐Cu2O@RGO) was prepared through a one‐pot reflux synthesis method. The morphology, crystal structure and composition of the prepared Cu‐Cu2O@RGO were characterized using transmission electron microscopy, X‐ray diffraction, and X‐ray photoelectron, infrared and Raman spectroscopies. Cu‐Cu2O@RGO as a heterogeneous catalyst was applied to tandem reactions of halides and sodium azide with terminal alkynes to synthesize effectively 1,4‐disubstituted 1,2,3‐triazoles. Moreover, the catalyst showed excellent recyclability performance with very little leaching of the metal. Compared with homogeneous catalysts, Cu‐Cu2O@RGO as a green and efficient catalyst was recoverable, easy to separate and highly stable in the tandem method for the synthesis of 1,2,3‐triazole compounds.  相似文献   
2.
This study reports the synthesis of octahedral Pd-Pt bimetallic alloy nanocrystals through a facile, one-pot, templateless, and seedless hydrothermal method in the presence of glucose and hexadecyl trimethyl ammonium bromide. The morphologies, compositions, and structures of the Pd-Pt nanocrystals were fully characterized by various physical techniques, thereby demonstrating their highly alloying octahedral nanostructures. The formation or growth mechanism of the Pd-Pt bimetallic alloy nanocrystals was explored and is discussed here based on the experimental observations. In addition, the synthesized Pd-Pt nanocrystals were applied to the methanol oxidation reaction (MOR) in alkaline media, which proved that the as-prepared catalysts exhibit enhanced electrocatalytic activity for MOR. Pd1Pt3 exhibited the best stability and durability, and its mass activity was 3.4 and 5.2 times greater than those of Pt black and Pd black catalysts, respectively. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they have the potential to be used in direct methanol fuel cell techniques.  相似文献   
3.
An analytical method was developed to quantitatively determine pharmaceuticals in biosolid (treated sewage sludge) from wastewater treatment plants (WWTPs). The collected biosolid samples were initially freeze dried, and grounded to obtain relatively homogenized powders. Pharmaceuticals were extracted using accelerated solvent extraction (ASE) under the optimized conditions. The optimal operation parameters, including extraction solvent, temperature, pressure, extraction time and cycles, were identified to be acetonitrile/water mixture (v/v 7:3) as extraction solvent with 3 extraction cycles (15 min for each cycle) at 100 °C and 100 bars. The extracts were cleaned up using solid-phase extraction followed by determination by liquid chromatography coupled with tandem mass spectrometry. For the 15 target pharmaceuticals commonly found in the environment, the overall method recoveries ranged from 49% to 68% for tetracyclines, 64% to 95% for sulfonamides, and 77% to 88% for other pharmaceuticals (i.e. acetaminophen, caffeine, carbamazepine, erythromycin, lincomycin and tylosin). The developed method was successfully validated and applied to the biosolid samples collected from WWTPs located in six cities in Michigan. Among the 15 target pharmaceuticals, 14 pharmaceuticals were detected in the collected biosolid samples. The average concentrations ranged from 2.6 μg/kg for lincomycin to 743.6 μg/kg for oxytetracycline. These results indicated that pharmaceuticals could survive wastewater treatment processes, and accumulate in sewage sludge and biosolids. Subsequent land application of the contaminated biosolids could lead to the dissemination of pharmaceuticals in soil and water environment, which poses potential threats to at-risk populations in the receiving ecosystems.  相似文献   
4.
以间苯二酚/甲醛(RF)树脂为软模板, 正硅酸乙酯(TEOS)为硅源, 十六烷基三甲基溴化铵(CTAB)为制孔剂, 采用一锅溶胶-凝胶法制备了多形貌中空介孔二氧化硅微球(HMSM). 通过改变甲醛用量调控软模板RF树脂的结构, 可以获得一系列不同形貌及结构的HMSM, 随着甲醛用量的增加, HMSM结构表现为单层壳空心球、 蛋黄壳空心球、 双层壳空心球等结构. 其中具有蛋黄壳空心球结构的HMSM比表面积可达691 m 2/g, 孔体积达2.23 cm 3/g, 孔径均匀(3.5 nm). 以硝酸铈铵为引发剂, 在具有蛋黄壳空心球结构的HMSM中引发丙烯腈自由基聚合, 并将支链聚丙烯腈上的氰基偕胺肟化, 制得HMSM接枝聚偕胺肟(HMSM-g-PAO). 以100 mg/L的CuCl2溶液为目标溶液, 在pH=4.0时测试合成的HMSM-g-PAO对Cu 2+的吸附效果, 发现吸附平衡时Cu 2+吸附量达134 mg/g.  相似文献   
5.
微小RNA(microRNA,miRNA)和短链干扰RNA (small interfering RNA,siRNA)是两类具有调节基因表达功能的内源性非编码性小RNA分子.它们已成为多种疾病的潜在治疗药物,逐渐被应用于基因治疗中,而将小RNA应用于基因治疗亟需一种安全高效的递送载体.壳聚糖及其衍生物作为一种可降解、低...  相似文献   
6.
This article discusses the determination of risk capital based on “aversion” functions. Aversion functions weigh different outcomes according to perceived severity. Many practical and popular risk measures are usefully viewed in terms of aversion functions including those arising from distortion operators and risk margin loadings. The approach of this paper builds on, unifies, and extends existing disparate approaches discussed in the literature. Analytical and computer generated illustrations are given as well as suggestions for the practical determination of aversion functions.  相似文献   
7.
碳素基体固相微萃取吸附质的研制   总被引:15,自引:0,他引:15  
方瑞斌  张维昊  王建  张琨玲  佴柱 《色谱》1999,17(5):453-455
研制了石墨型碳素基体固相微萃取吸附质,并以该新型固相微萃取装置联用气相色谱 电子捕获检测器分析水体中的有机农药。考察了吸附萃取时间及离子强度对分析结果的影响,并与商品装置进行了对比,结果表明其具有很好的应用前景。  相似文献   
8.
采用高温固相法合成了一系列Eu2+激活的Sr3LnM(PO4)3F(Ln=Gd, La, Y; M= Na, K)荧光粉,并通过X射线衍射、扫描电子显微镜、荧光光谱等对样品的物相结构、形貌和发光特性进行了表征及分析。结果表明:成功合成了Sr3LnM(PO4)3F:Eu2+荧光粉,样品的粒径为2~10 μm。荧光粉在蓝光区具有强烈的发射,归属为发光中心Eu2+的4f65d→4f7跃迁。当基质中的碱金属M由Na变成K时,Eu2+的发光颜色由淡蓝色变成深蓝色,色纯度大幅提高,有效地调控了Eu2+在氟磷灰石Sr3LnM(PO4)3F中的发光,进而发现了一种通过改变第二层配位原子来调控Eu2+发光的策略。  相似文献   
9.
10.
新固相微萃取—气相色谱法分析大气中芳烃物质   总被引:26,自引:0,他引:26  
方瑞斌  张琨玲 《分析化学》1998,26(8):1029-1032
用石墨吸附质棒固相微萃取装置吸附、富集大气芳烃污染物,于气相以谱中解吸并分析。实验表明此法具有无溶剂、快速、简便、灵敏等优点,具有很大的实用性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号