首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  国内免费   1篇
化学   10篇
物理学   4篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  1999年   1篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
1.
A ruthenium(II)-catalyzed asymmetric intramolecular hydroarylation assisted by a chiral transient directing group has been developed. A series of 2,3-dihydrobenzofurans bearing chiral all-carbon quaternary stereocenters have been prepared in remarkably high yields (up to 98 %) and enantioselectivities (up to >99 % ee). By this methodology, a novel asymmetric total synthesis of CB2 receptor agonist MDA7 has been successfully developed.  相似文献   
2.
MnOx/Al2O3/Ce0.45Zr0.45M0.10Oy (M = Mn,Y,La) catalysts were prepared by impregnation method and characterized by BET,TPR and XRD analyses.The catalytic activities toward ethanol combustion were investigated in a microreactor.The results demonstrated that the catalytic activity of MnOx/Al2O3/Ce0.50Zr0.50O2 monolithic catalyst could be improved by doping Mn,Y and La into Ce0.50Zr0.50O2.When doping Y into Ce0.50Zr0.50O2,the catalyst MnOx/Al2O3/Ce0.45Zr0.45Y0.10O1.95 showed the highest activity.The 100% conversion temperature of ethanol was 230 ℃.Furthermore,once the conversion of ethanol started,the complete conversion was quickly achieved.The doping of Mn,Y and La led to better activity for ethanol combustion and lower temperature reduction peaks in TPR profiles.The doping of Mn resulted in enhanced oxygen storage capacity (OSC),larger area of the reduction peaks,and excellent reactivity,and the doping of Y resulted in the lowest reduction temperature and the best activity.  相似文献   
3.
短腔Er/Yb光纤光栅激光器   总被引:2,自引:0,他引:2  
报道采用光敏Er/Yb 光纤制作短腔Er/Yb 光纤光栅激光器的实验结果。激光谐振腔由一对直接写在30 m m 长的Er/Yb 光纤上、长度分别为6 m m 及10 m m 、反射率分别为90% 及98.6% 、3 dB带宽分别为0.28 nm 及0.26 nm 的光纤布拉格光栅组成, 激光器的泵浦阈值为8m W, 斜效率约14% , 输出光的信噪比为61 dB, 偏振模抑制比为30 dB。  相似文献   
4.
Copolymerization of propargylether having antipyrine group (PT) and N‐(tert‐butoxycarbonyl)‐l ‐valine‐N‐propargylamide (LA) was conducted with (nbd)Rh+[η6‐C6H5B?(C6H5)3] as a catalyst to obtain novel antipyrine‐functionalized chiral copolymer. The controllable secondary structure of the copolymers by different unit ratio or solvent environment led to a controlled fluorescence of the side‐chain antipyrine. Poly(LA88co‐PT12) exhibited a large specific rotation and a circular dichroism (CD) signal, while it emitted very stronger fluorescence. From CD and ultraviolet–visible spectra, the regular structure of poly(LA88co‐PT12) was destroyed, and the random coil was formed with temperature increase. The helical conformation of poly(LA75co‐PT25) disappeared by the addition of MeOH to CHCl3 solution, while the fluorescence signal also became weaker than in CHCl3 solution. It is suggested that the copolymer conformation much influenced the performance of chromophores. In the present study, the helix conformation could induce fluorescence enhancement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
Before launching a real viral marketing campaign, it is needed to design a spreading scheme by simulations. Based on a categorization of spreading patterns in real world and models, we point out that the existing research (especially Yang et al. (2010) Ref.  [16]) implicitly assume that if a user decides to post a received message (is activated), he/she will take the reposting action promptly (Prompt Action After Activation, or PAAA). After a careful analysis on a real dataset however, it is found that the observed time differences between action and activation exhibit a heavy-tailed distribution. A simulation model for heavy-tailed pattern is then proposed and performed. Similarities and differences of spreading processes between the heavy-tailed and PAAA patterns are analyzed. Consequently, a more practical design approach of spreading scheme for viral marketing on QQ platform is proposed. The design approach can be extended and applied to the contexts of non-heavy-tailed pattern, and viral marketing on other instant messaging platforms.  相似文献   
6.
A ruthenium(II)‐catalyzed asymmetric intramolecular hydroarylation assisted by a chiral transient directing group has been developed. A series of 2,3‐dihydrobenzofurans bearing chiral all‐carbon quaternary stereocenters have been prepared in remarkably high yields (up to 98 %) and enantioselectivities (up to >99 % ee). By this methodology, a novel asymmetric total synthesis of CB2 receptor agonist MDA7 has been successfully developed.  相似文献   
7.
Abivertinib represents a highly selective irreversible epidermal growth factor receptor tyrosine kinase inhibitor. Two major metabolites of abivertinib, M7 and MII-6, were detected in human plasma, which are recommended to be monitored for safety reasons in clinical trial. A high-throughput quantification method utilizing liquid chromatography–tandem mass spectrometry was designed and verified to quantify abivertinib's primary metabolites in human plasma. Solid-phase extraction was used to process the plasma, and then the analytes underwent a gradient elution separation in an Aquity UPLC BEH C18 column (1.7 μm, 2.1 × 50 mm) with mobile phase A (10 mm ammonium acetate containing 0.1% formic acid) and mobile phase B (methanol–acetonitrile, 2:8, v/v, with 0.1% formic acid). Ion transitions of M7 (m/z 490.2 → 405.1) and MII-6 (m/z 476.2 → 391.1) were monitored under multiple reaction monitoring mode and electrospray ionization in positive ion mode. This simultaneous determination method was found to have acceptable precision, accuracy and linearity in the 0.5–500 ng/mL range for M7 and the 0.5–500 ng/mL range for MII-6, accompanied by a mild matrix effect but high recovery. Further stability assessments indicated that both analytes remained stable throughout the entire experimental process from harvesting whole blood to plasma extraction and analysis.  相似文献   
8.
The first enantioselective Satoh–Miura‐type reaction is reported. A variety of C?N axially chiral N‐aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium‐catalyzed dual C?H activation reaction of N‐aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C?N axially chiral compounds by such a C?H activation strategy.  相似文献   
9.
Recent studies on organic/inorganic heterostructures have indicated that interface morphology plays an important role in determining the charge transport properties. Hybrid heterostructure light-emitting diodes mixing donor and acceptor semiconductors appear to offer the best opportunity in achieving superior performance and there are indications that a network of percolated heterojunctions can be very effective in promoting light absorption/emission. Charge transport however can be more complex in a nanorod heterostructure as the charge flow at the interface will depend on the injection mechanism(s) as well as the interface field strength. In this work, we examined the current density–voltage characteristics of the hybrid NPB (N, N′-di(napth-2-yl)-N-N′-diphenylbenzidine)–ZnO nanorod heterostructure and attempted to identify the transport mechanism(s) close to the tips of the nanorods. Our study indicated that charge flow essentially followed the conventional pattern changing from a linear regime (emission-limited) to a quadratic regime (space-charge limited) and possibly to a rapid rise in current (trap-free injection). Detailed evaluation of the changes in the reported conductivity data further suggested the conduction mechanism (up to a p-layer thickness of 400 nm) was dominated by space-charge limited current in the NPB layer, which also resulted in substantial charge pile-up near the tips of the nanorods. An interface charge layer responsible for the barrier height modification effect could be used to explain the observed “blue-shift” in the emission spectra of the nanorod heterostructure light-emitting diode as reported by Sun et al. [2].  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号