首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2021年   2篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Abstract

Flash vacuum pyrolysis (FVP) over freshly resublimed magnesium on glass wool is a convenient and powerful dehalogenating procedure for a wide range of organic halides. We have now applied this system to the generation of phosphinidenes from the corresponding dichlorophosphines. As shown below, the production of phospholane from 1 and the interesting pyrophoric polymer 3 from 2 are readily explained by intramolecular insertion of the phosphinidenes. Under similar conditions 4 gives not only the expected phosphinidene insertion product, the phosphaindane 5, but also as a minor product, the 3-H-phosphaindene (“phosphindole”) 6 - the first example of a new heterocyclic system and the first 3-H-phosphole of any type.  相似文献   
2.
α-Amino acids find widespread applications in various areas of life and physical sciences. Their syntheses are carried out by a multitude of protocols, of which Petasis and Strecker reactions have emerged as the most straightforward and most widely used. Both reactions are three-component reactions using the same starting materials, except the nucleophilic species. The differences and similarities between these two important reactions are highlighted in this review.  相似文献   
3.
Molecular hybridization is a drug discovery strategy that involves the rational design of new chemical entities by the fusion (usually via a covalent linker) of two or more drugs, both active compounds and/or pharmacophoric units recognized and derived from known bioactive molecules. The expected outcome of this chemical modification is to produce a new hybrid compound with improved affinity and efficacy compared to the parent drugs. Additionally, this strategy can result in compounds presenting modified selectivity profiles, different and/or dual modes of action, reduced undesired side effects and ultimately lead to new therapies. In this study, molecular hybridization was used to generate new molecular hybrids which were tested against the chloroquine sensitive (NF54) strain of P. falciparum. To prepare the new molecular hybrids, the quinoline nucleus, one of the privileged scaffolds, was coupled with various chalcone derivatives via an appropriate linker to produce a total of twenty-two molecular hybrids in 11%–96% yield. The synthesized compounds displayed good antiplasmodial activity with IC50 values ranging at 0.10–4.45 μM.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号