首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2011年   1篇
  2010年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A novel way to produce ultrathin transparent carbon layers on tin‐doped indium oxide (ITO) substrates is developed. The ITO surface is coated with cellulose nanofibrils (from sisal) via layer‐by‐layer electrostatic binding with poly(diallyldimethylammonium chloride) or PDDAC acting as the binder. The cellulose nanofibril‐PDDAC composite film is then vacuum‐carbonised at 500 °C. The resulting carbon films are characterised by atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), wide‐angle X‐ray scattering (WAXS), and Raman methods. Smooth carbon films with good adhesion to the ITO substrate are formed. The electrochemical characterisation of the carbon films is based on the oxidation of hydroquinone and the reduction of benzoquinone in aqueous phosphate buffer media. A modest effect of the cellulose nanofibril‐PDDAC film on the rate of electron transfer is observed. The effect of the film on the rate of electron transfer after carbonisation is more dramatic. For a 40‐layer cellulose nanofibril‐PDDAC film after carbonisation a two‐order of magnitude change in the rate of electron transfer occurs presumably due to a better interaction of the hydroquinone/benzoquinone system with the electrode surface.  相似文献   
2.

Polyaniline of low molecular weight (ca. 10 kDa) is combined with cellulose nanofibrils (sisal, 4–5 nm average cross-sectional edge length, with surface sulphate ester groups) in an electrostatic layer-by-layer deposition process to form thin nano-composite films on tin-doped indium oxide (ITO) substrates. AFM analysis suggests a growth in thickness of ca. 4 nm per layer. Stable and strongly adhering films are formed with thickness-dependent coloration. Electrochemical measurements in aqueous H2SO4 confirm the presence of two prominent redox waves consistent with polaron and bipolaron formation processes in the polyaniline–nanocellulose composite. Measurements with a polyaniline–nanocellulose film applied across an ITO junction (a 700 nm gap produced by ion beam milling) suggest a jump in electrical conductivity at ca. 0.2 V vs. SCE and a propagation rate (or percolation speed) two orders of magnitude slower compared to that observed in pure polyaniline This effect allows tuning of the propagation rate based on the nanostructure architecture. Film thickness-dependent electrocatalysis is observed for the oxidation of hydroquinone.

  相似文献   
3.
Polyaniline of low molecular weight (ca. 10?kDa) is combined with cellulose nanofibrils (sisal, 4?C5?nm average cross-sectional edge length, with surface sulphate ester groups) in an electrostatic layer-by-layer deposition process to form thin nano-composite films on tin-doped indium oxide (ITO) substrates. AFM analysis suggests a growth in thickness of ca. 4?nm per layer. Stable and strongly adhering films are formed with thickness-dependent coloration. Electrochemical measurements in aqueous H2SO4 confirm the presence of two prominent redox waves consistent with polaron and bipolaron formation processes in the polyaniline?Cnanocellulose composite. Measurements with a polyaniline?Cnanocellulose film applied across an ITO junction (a 700?nm gap produced by ion beam milling) suggest a jump in electrical conductivity at ca. 0.2?V vs. SCE and a propagation rate (or percolation speed) two orders of magnitude slower compared to that observed in pure polyaniline This effect allows tuning of the propagation rate based on the nanostructure architecture. Film thickness-dependent electrocatalysis is observed for the oxidation of hydroquinone.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号