首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2010年   1篇
  2009年   2篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
La0.76Sr0.19Mn1?xCoxOδ, LSMCox (0  x  1) perovskite oxides were synthesized by conventional ceramic route. The effect of Co substitution for Mn on the crystal structure, electrical conductivity and thermal expansion properties was investigated. XRD indicated rhombohedral symmetry for the studied compositions at 1673 K. The lattice parameters so determined showed significant reduction in cell volume, which is attributed to smaller ionic radii of Co3+ ions. The results of electrical conductivity data indicated that the conductivity mechanism is by thermally activated hopping of small polarons between localized states corresponding to Mn or Mn and Co sites of different valence value. The conductivity decreases at all temperatures up to 40 mol% Co substitution while the energy of activation increases. This is possibly due to an increase in Jahn–Teller distortion, at an extent higher than the increase of the concentration of charge carriers. Thermal expansion coefficient values in the series increase with increasing Co content which has been explained on the basis of the changes in the spin states of the Co ions and the consequent changes in the ionic size with temperature. Solution route synthesis produces fine-size particles with better properties, consequently one composition from the above having enhanced requisite properties, viz. La0.76Sr0.19Mn0.8Co0.2Oδ was synthesized by sol–gel route. The sol–gel synthesized compound had crystallite size of ~30 nm at 1173 K obtained using Scherrer's equation. Thus the potential of these compounds as cathodes for solid oxide fuel cells (SOFCs) have been evaluated.As Ce0.8RE0.2O2?δ (RE = Sm, Gd) are being investigated for their use as electrolytes in SOFCs, their mechanical compatibility as well as chemical compatibility with the potential cathode material from the above LSMCox series was also studied.  相似文献   
2.
Among the perovskites, the rare earth manganites find application in several electrochemical devices because of their enhanced thermodynamic stability. In this paper, we present the results obtained on the preparation and characterization of La0.95MnO3+δ and Sm0.95MnO3+δ which were prepared by the solid state and sol–gel methods. XRD characterization of the manganites indicated that the crystal structure depends on the method of preparation and heat treatments. The ratio of Mn3+ to Mn4+ in these samples also depended on the method of preparation and heat treatments, as indicated by thermogravimetric (TG) and temperature programmed reduction (TPR) studies in Ar + 5% H2 atmosphere. The standard molar enthalpy of formation, which is a measure of the thermodynamic stability of these compounds were determined using an isoperibol calorimeter.  相似文献   
3.
Ce0.8Eu0.2O2?δ was synthesized by conventional solid state route as well as wet chemical route (i.e. cation complexation, combustion method). The crystallite size obtained for cation complexation and combustion samples is 14 and 19 nm while their surface area is 11.70 and 29.63 m2g?1 respectively. Cation complexation synthesized product lead to formation of agglomerates and hence the sintered sample showed porosity compared to combustion synthesized sample. However, despite high packing density the combustion synthesized sample showed lower grain boundary, total conductivity than cation complexation synthesized product due to the formation of siliceous film at the grain boundary.  相似文献   
4.
Sr2CeO4 has been prepared by sol-combustion and co-precipitate routes and the resulting products have been characterized by XRD analysis. The molar enthalpies of solution of Sr2CeO4(s), Sr(NO3)2(s) and Ce(NO3)3·6H2O(s) in 0.150 dm–3 of (4.41 mol dm–3 H2O2+4.23 mol dm–3 of HNO3) solvent as well as the molar enthalpies of solution of Sr2CeO4(s), SrCl2(s) and CeCl3(s) in 0.150 dm3 of (1.47 mol dm–3 H2O2+3.05 mol dm–3 of HClO4) solvent have been measured using an isoperibol type calorimeter. From these results and other auxiliary data, the standard molar enthalpy of formation of Sr2CeO4 has been derived to be –2277.3±3.1 kJ mol–1 at 298.15 K. This is the first reported thermodynamic data on this compound.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号