首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   6篇
数学   1篇
物理学   1篇
  2021年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
This study demonstrates the course of solubility and (liquid + liquid) equilibrium (LLE) for the system (cyclohexane + 1-butanol + 2,2,2-trifluoroethanol) at temperatures of (288.15, 298.15, and 308.15) K and pressure 101.3 kPa. The titration method was used to assess solubility (binodal) curves, while a direct analytical method to acquire tie lines.The consistency of the binodal curves and phase diagrams data were well calculated by Hand and Othmer–Tobias empirical equations. The NRTL and UNIQUAC thermodynamic models gave accurate tie-line values for the systems. Plait-point, distribution coefficient, solvent selectivity, and NRTL and UNIQUAC binary interaction parameters were obtained.The immiscibility region of the system decreases significantly with increasing temperature. The results present an overview of the high efficiency of liquid extraction using 2,2,2-trifluoroethanol as solvent to yield pure cyclohexane from its 1-butanol azeotrope mixture at ambient temperatures.  相似文献   
2.
Results from gas–liquid chromatography are presented for (liquid + liquid) equilibrium of the system of mixed solvents of (hexane + methanol + 2,2,2-trifluoroethanol) at the temperatures T = (288.15, 298.15, 303.15) K, and under atmospheric pressure. The system presents type (II) liquid–liquid phase diagram. The NRTL and UNIQUAC equations reliably represent the measured data with an average root-mean-square deviation in phase-compositions equal to 1.2%. The binary interaction parameters for the associated (nonpolar + polar) system are estimated by means of the same equations. The temperature effect on the system miscibility is reasonably important.  相似文献   
3.
Salicylaldehyde or 5-bromosalicylaldehyde reacted with 2,3-diaminophenol in absolute EtOH in a 2:1 molar ratio to give new unsymmetrical Schiff bases (H2L). The bases were used as ligands to coordinate Mn(III), Ni(II) and Cu(II) chlorides leading to [MnIIIClL] · EtOH and [MIIL] or [MIIL] · 2H2O (M = Ni or Cu) complexes. Their structures were determined using mass spectroscopy, IR, u.v.–vis and 1H-n.m.r. The cyclic voltammetry in acetonitrile showed irreversible waves for both ligands. Under the same experimental conditions, the complexes exhibited mainly the non-reversible reduction of the Ni(II) or Cu(II) ion to Ni(0) or Cu(0), while the reduction of Mn(III) to Mn(II) was found to be a quite reversible phenomenon.  相似文献   
4.
CuCrO2 single crystal, elaborated by the flux method, is a narrow-band-gap semiconductor crystallizing in the delafossite structure with an indirect optical transition at 2.12 eV. The relatively longer Cu–Cu is consistent with the semi-conducting behavior. The conductivity in the (001) plans is thermally activated and occurs predominantly by small polaron hopping through mixed-valence states Cu+/2+ in conformity with a classical dielectric behavior. The activation energy (0.05 eV) gave an effective mass of 9 m o, indicating that the levels in the vicinity of the Fermi level E f are strongly localized. The oxide shows an excellent chemical stability over the whole pH range; the semi-logarithmic plot gave an exchange current density of 0.7 mA cm−2 and a corrosion potential of 0.18 V/SCE in KOH (0.5 M) electrolyte. The electrochemical study is confined in (001) plans, and reversible oxygen intercalation is evidenced from the cyclic voltammetry. The Mott–Schottky plot (C−2-V) is characteristic of p type conduction and exhibits a linear plot from which a flat band potential of +0.21 V/SCE and a holes density N A of 5.06 × 1014 cm−3 were obtained. The photocurrent is due to Cu+: d → d transition and the valence band is positioned at 5.34 eV below vacuum.  相似文献   
5.
A latent heat thermal energy storage (LHTES) unit can store a notable amount of heat in a compact volume. However, the charging time could be tediously long due to weak heat transfer. Thus, an improvement of heat transfer and a reduction in charging time is an essential task. The present research aims to improve the thermal charging of a conical shell-tube LHTES unit by optimizing the shell-shape and fin-inclination angle in the presence of nanoadditives. The governing equations for the natural convection heat transfer and phase change heat transfer are written as partial differential equations. The finite element method is applied to solve the equations numerically. The Taguchi optimization approach is then invoked to optimize the fin-inclination angle, shell aspect ratio, and the type and volume fraction of nanoparticles. The results showed that the shell-aspect ratio and fin inclination angle are the most important design parameters influencing the charging time. The charging time could be changed by 40% by variation of design parameters. Interestingly a conical shell with a small radius at the bottom and a large radius at the top (small aspect ratio) is the best shell design. However, a too-small aspect ratio could entrap the liquid-PCM between fins and increase the charging time. An optimum volume fraction of 4% is found for nanoparticle concentration.  相似文献   
6.
7.
Competitive Memetic Algorithms for Arc Routing Problems   总被引:2,自引:0,他引:2  
The Capacitated Arc Routing Problem or CARP arises in applications like waste collection or winter gritting. Metaheuristics are tools of choice for solving large instances of this NP-hard problem. The paper presents basic components that can be combined into powerful memetic algorithms (MAs) for solving an extended version of the CARP (ECARP). The best resulting MA outperforms all known heuristics on three sets of benchmark files containing in total 81 instances with up to 140 nodes and 190 edges. In particular, one open instance is broken by reaching a tight lower bound designed by Belenguer and Benavent, 26 best-known solutions are improved, and all other best-known solutions are retrieved.  相似文献   
8.
A wavy shape was used to enhance the thermal heat transfer in a shell-tube latent heat thermal energy storage (LHTES) unit. The thermal storage unit was filled with CuO–coconut oil nano-enhanced phase change material (NePCM). The enthalpy-porosity approach was employed to model the phase change heat transfer in the presence of natural convection effects in the molten NePCM. The finite element method was applied to integrate the governing equations for fluid motion and phase change heat transfer. The impact of wave amplitude and wave number of the heated tube, as well as the volume concertation of nanoparticles on the full-charging time of the LHTES unit, was addressed. The Taguchi optimization method was used to find an optimum design of the LHTES unit. The results showed that an increase in the volume fraction of nanoparticles reduces the charging time. Moreover, the waviness of the tube resists the natural convection flow circulation in the phase change domain and could increase the charging time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号