首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
化学   24篇
数学   2篇
物理学   17篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   6篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   2篇
  1989年   1篇
  1965年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
Russian Journal of Physical Chemistry A - Morphological and spectral characteristics of hybrid nanosystems (NSes) based on mono- and bimetallic silver and platinum nanoparticles (NPs) stabilized by...  相似文献   
2.
The effect of solubilized dodecylamine (DDA) on the structure of the cetylpyridinium bromide-n-butanol-hexane-water microemulsions has been studied by the Fourier-transform pulsed-gradient spin-echo1H nuclear magnetic resonance and the electron spin resonance spin label method. The sample compositions were chosen to examine three different microemulsion structures: oil-in-water, water-in-oil and bicontinuous. In all systems the DDA molecules are shown to be incorporated into the oil-water interface, resulting in essential changes in the microemulsion structure. In the micellar systems the DDA emergence in the interface causes an increase of the micelle size and a redistribution of butanol and water between micelle and bulk phases. In the oil-in-water microemulsions of amine-containing systems the quantity of micellized butanol and water decreases. In the water-in-oil microemulsions the introduction of DDA leads to an increase of butanol and water involved in the micelle formation. The redistribution of butanol and water between polar and organic phases in the microemulsions would be expected to cause changes in the bicontinuous structure.  相似文献   
3.
The morphology and thermodynamic characteristics of nanostructures formed as a result of the reduction of the selenium ion in a selenite-ascorbate redox system in water solutions of polymethacrylic acid were studied by molecular optics and atomic-force microscopy. The dependence of the morphology of the selenium-containing nanostructures on the mass selenium-to-polymer ratio (ν) in solution was determined. It was established that a large number of macromolecules (up to 4300) is adsorbed on the selenium nanoparticles, leading to the formation of nanostructures with super-high molecular mass and an almost spherical form. It was shown that the density of the nanostructures, as calculated on the basis of the experimental data on the size and molecular mass of the nanocomposite, depends substantially on the selenium concentrations in the solution. The thermodynamic state of the solutions of nanostructures is described.  相似文献   
4.
On the basis of the literature data, a retrospective analysis of the thermodynamic characteristics of dissolution of fullerene C60 in a series of single-ring aromatic solvents is presented. The effect of the molecular structure of a solvent on its dissolving capacity with respect to fullerene is studied. The parameter of the boiling temperature of the solvent normalized to its molecular mass is introduced. The correlation of this parameter with the dissolving capacity of the solvent is discussed. Special emphasis is placed on the effect of halogen-containing solvents on the dissolution of fullerene and indirectly on the development of the mechanical characteristics of films prepared from common solutions of fullerene and low-density polyethylene. For comparison, the films prepared from PE melts modified with low concentrations of fullerene are considered. The film structure is studied via X-ray analysis, optical microscopy, AFM, small-angle scattering of linearly polarized light, and DSC. The films with the maximum strength are prepared from solutions in halogen-containing solvents at a concentration of fullerene below 1 wt %. In this case, spherulites are 5–10 times smaller than those in the films cast from solutions in other solvents. In the films cast from common solutions of PE and fullerene in bromobenzene, crystal solvates C60 · 2C6H5Br are formed. It seems that the formation of the crystal solvates binds the residual solvent and thus affects the mechanical behavior of the films, thereby eliminating the plasticizing effect of residual bromobenzene. Localization of fullerene in various regions of the supramolecular structure of the films is discussed, and the morphology of the separating regions of the crystal solvate fullerene phase is analyzed.  相似文献   
5.
The theory of electron spin relaxation in protein solutions taking into account the “two-motion” model of spin label mobility is developed. The relations obtained for the longitudinal and transverse relaxation rates describe the experimental results better than isotropic (“one-motion”) model. The mechanism of longitudinal relaxation in solution of spin-labeled lysozyme is revealed and the correlation time of the inherent motion of spin label is evaluated. The linewidth analysis and study of ESR spectra under viscosity variation were used to obtain the microdynamical parameters characterizing lysozyme molecular mobility. A discrepancy between the correlation time values obtained by viscosity-variation-technique and the results known from other methods is found and ascribed to the manifestation of the intermediate time-scale mobility of protein.  相似文献   
6.
The surface structure of thin films based on poly[4,4′-bis(4″-N-phenoxy)diphenyl]amic acid of 1,3-bis(3′,4-dicarboxyphenoxy)benzene and the product of its thermal imidization—a semicrystalline polyimide—poly[4,4′-bis(4″-N-phenoxy)diphenyl]imide of 1,3-bis(3′,4-dicarboxyphenoxy)benzene—at various stges of thermal imidization and after melting and subsequent annealing has been studied by methods of transmission, scanning electron, and atomic force microscopies. The topological structure of the film surface has been described in terms of the discrete cluster model. Under heating to 200 and 280°C, a continuous network of the infinite cluster appears; subsequent annealing leads to disintegration of the network to discrete fragments that practically correspond to clusters in the starting poly(amic acid) film. The polyimide film heated to 280°C crystallizes in the form of needle crystals stable to the argon plasma. The surface morphology of polyimide films recrystallized from melt is of the spherulite character.  相似文献   
7.
Films of aliphatic polyurethane-silica composites containing up to 27.3 mol % of SiO2 nanoparticles have been prepared by the parallel synthesis using the sol-gel technology. It has been revealed that the variations in the mechanical properties of these materials with increasing concentration of nanoparticles exhibit a nontrivial behavior: the ultimate strain gradually increases, whereas the elastic modulus and the yield stress decrease. A correlation of the changes observed in the mechanical characteristics with an increase in the free volume of the material with increasing silica concentration has been established. Atomic-force microscopy has confirmed the existence of a developed system of nanopores with characteristic sizes from 15 to 100 nm in the materials under investigation.  相似文献   
8.
New nanocomposites based on heat-resistant poly[(diphenyl oxide)amido-N-phenylphthalimide] with Mg3Si2O5(OH)4 hydrosilicate nanoparticles of tubular structure were prepared. The structure, morphology, and thermal properties of the nanocomposites were studied in relation to the content of hydrosilicate nanotubes.  相似文献   
9.
Nanostructure, glass transition dynamics and elastic properties were studied in the 3D nanodiamond‐containing composites based on polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs), neat PU or PHEMA matrices. Nanodiamond (ND) content in the nanocomposites varied from 0.25 to 3 wt %. Combined differential scanning calorimetry/ laser‐interferometric creep rate spectroscopy/atomic force microscopy approach was utilized. A large impact of small 3D ND additives on PU‐PHEMA networks' dynamics and properties was revealed under conditions when an average inter‐particle distance L exceeds by far gyration radius Rg. The pronounced heterogeneity of glass transitions' dynamics and two opposite effects were observed. The main effect was a strong suppression of PHEMA glass transition dynamics at 90–180 °C, with the enhancement of creep resistance and threefold to sixfold increasing modulus of elasticity. The peculiarly crosslinked structure of nanocomposites, due to double covalent hybridization, resulted in low rheological percolation threshold, and a synergistic effect in dynamics was observed. Less pronounced effect of accelerating dynamics in the temperature region between β‐ and α‐transitions in PHEMA was associated with dynamics in domains with loosened molecular packing. The distinct physical limit for “anomalous” decreasing Tg is predicted in terms of the notion of the common segmental nature of α‐ and β‐relaxations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1696–1712, 2008  相似文献   
10.
Water-soluble polymers poly-N-methacryloyloxyethyl-N,N,N-trimethylammonium methyl sulfate and poly(methacrylic acid) are found on the basis of spectral, thermophysical, structural, and morphological studies to form stable complexes with Photodithazine photosensitizer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号