首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   16篇
物理学   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2015年   1篇
  2012年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1992年   1篇
排序方式: 共有19条查询结果,搜索用时 78 毫秒
1.
Traditional liposome preparation methods are based on mixing of bulk phases, leading to inhomogeneous chemical and/or mechanical conditions during formation; hence liposomes are often polydisperse in size and lamellarity. Here we show the formation of liposomes that encapsulate reagents in a continuous two-phase flow microfluidic network with precision control of size from 100 to 300 nm by manipulation of liquid flow rates. We demonstrate that by creating a solvent-aqueous interfacial region in a microfluidic format that is homogeneous and controllable on the length scale of a liposome, we can facilitate the fine control of liposome size and polydispersity.  相似文献   
2.
Through the sol–gel process, using the so-called neutral amine route, spherical particles of 1:1 zirconia–titania were synthesized from zirconium(IV) and titanium(IV) butoxides as well as 1,12-diaminododecane as precursor species. The obtained product exhibited a hexagonal structure, as determinated by X-ray diffraction data. The obtained material was also characterized by thermogravimetry, differential scanning calorimetry, infrared spectroscopy, scanning electron microscopy, and surface area measurements. Despite the release of template molecules on heating, the spherical morphology was retained up to about 1200°C, at which the disruption of the spheres took place.  相似文献   
3.
The effects exhibited by adsorbed conducting polyaniline on the redox process on a molybdenum oxide surface were studied. Thermogravimetric results indicate a 4% polyaniline deposition. Cyclic voltammograms of the adsorbed polymer on MoO3 show that polyaniline exerts remarkable effects on the molybdenum blue oxidation-reduction process, with oxidation and reduction potentials of 0.33 and 0.18 V, respectively. This effect strongly enhances the electrode response, and can be used as an important tool in qualitative and/or quantitative determinations of molybdenum in solution as well as in any substrate. Copyright 1999 Academic Press.  相似文献   
4.
Fixed-size moving window evolving factor analysis and base peak chromatograms have been used for peak purity detection in data generated with LC-MS. The two methods were evaluated with both real and simulated data and were found to be fast and complementary to each other. When a possibly impure peak is detected, it is suggested that further information can be obtained from local principal component analysis modelling and comparative mass chromatogram plots.  相似文献   
5.
In this paper we investigate the physical and electrochemical properties of micropatterned poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:tosylate) microelectrodes for neurochemical detection. PEDOT:tosylate is a promising conductive polymer electrode material for chip-based bioanalytical applications such as capillary electrophoresis, high-performance liquid chromatography, and constant potential amperometry at living cells. Band electrodes with widths down to 3 μm were fabricated on polymer substrates using UV lithographic methods. The electrodes are electrochemically stable in a range between -200 mV and 700 mV vs. Ag/AgCl and show a relatively low resistance. A wide range of transmitters is shown to oxidize readily on the electrodes. Kinetic rate constants and half wave potentials are reported. The capacitance per area was found to be high (1670 ± 130 μF cm(-2)) compared to other thin film microelectrode materials. Finally, we use constant potential amperometry to measure the release of transmitters from a group of PC 12 cells. The results show how the current response decreases for a series of stimulations with high K(+) buffer.  相似文献   
6.
7.
This report describes a new method for the concentration and separation of neutral and/or hydrophobic analytes based on a combination of the analytes' electrophoretic mobility, and affinity for partitioning into a micellar phase. Micellar affinity gradient focusing (MAGF) works by creating a gradient in the micellar retention factor. An electric field is applied along the channel to cause the (negatively charged) micelles to move from the region of high retention to the region of low retention, and the mobile phase is forced to move from the region of low retention to the region of high retention. Consequently, the analyte moves into the gradient region from both directions where it is concentrated at a point where its total velocity is zero. Different analytes, which interact differently with the micelles, will have zero total velocity at different points along the gradient, and will thereby be simultaneously concentrated and separated.  相似文献   
8.
Metal-organic framework (MOF) thin films currently lack the mechanical stability needed for electronic device applications. Polymer-based metal-organic frameworks (polyMOFs) have been suggested to provide mechanical advantages over MOFs, however, the mechanical properties of polyMOFs have not yet been characterized. In this work, we developed a method to synthesize continuous sub-5 μm polyUiO-66(Zr) films on Au substrates, which allowed us to undertake initial mechanical property investigations. Comparisons between polyUiO-66 and UiO-66 thin films determined polyUiO-66 thin films exhibit a lower modulus but similar hardness to UiO-66 thin films. The initial mechanical characterization indicates that further development is needed to leverage the mechanical property advantages of polyMOFs over MOFs. Additionally, the demonstration in this work of a continuous surface-supported polyUiO-66 thin film enables utilization of this emerging class of polyMOF materials in sensors and devices applications.  相似文献   
9.
Preparation of nanoparticles by continuous-flow microfluidics   总被引:1,自引:0,他引:1  
We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.  相似文献   
10.
A new method to tailor liposome size and size distribution in a microfluidic format is presented. Liposomes are spherical structures formed from lipid bilayers that are from tens of nanometers to several micrometers in diameter. Liposome size and size distribution are tailored for a particular application and are inherently important for in vivo applications such as drug delivery and transfection across nuclear membranes in gene therapy. Traditional laboratory methods for liposome preparation require postprocessing steps, such as sonication or membrane extrusion, to yield formulations of appropriate size. Here we describe a method to engineer liposomes of a particular size and size distribution by changing the flow conditions in a microfluidic channel, obviating the need for postprocessing. A stream of lipids dissolved in alcohol is hydrodynamically focused between two sheathed aqueous streams in a microfluidic channel. The laminar flow in the microchannel enables controlled diffusive mixing at the two liquid interfaces where the lipids self-assemble into vesicles. The liposomes formed by this self-assembly process are characterized using asymmetric flow field-flow fractionation combined with quasi-elastic light scattering and multiangle laser-light scattering. We observe that the vesicle size and size distribution are tunable over a mean diameter from 50 to 150 nm by adjusting the ratio of the alcohol-to-aqueous volumetric flow rate. We also observe that liposome formation depends more strongly on the focused alcohol stream width and its diffusive mixing with the aqueous stream than on the sheer forces at the solvent-buffer interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号