首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   2篇
  国内免费   3篇
化学   86篇
晶体学   1篇
力学   3篇
数学   6篇
物理学   28篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   2篇
  2008年   11篇
  2007年   13篇
  2006年   18篇
  2005年   18篇
  2004年   7篇
  2003年   3篇
  2002年   2篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
1.
A semi classical reactive flux algorithm for calculating thermally activated rate constants is presented which is based on a semi-classical transition state theory due to Chapman, Garrett and Miller [J. Chem. Phys. 63 (1975) 2710]. This reactive flux technique, when combined with the semiclassical TST, enables one to describe dynamical recrossings of the transition state on the same footing as tunneling effects. Most importantly, the method is readily applied to nonlinear multidimensional systems over a wide range of temperatures. It will be shown that the method works very well for a variety of existing models.  相似文献   
2.
3.
A recently developed force-matching method for obtaining effective force fields for condensed matter systems from ab initio molecular dynamics (MD) simulations has been applied to fit a simple nonpolarizable two-site pairwise force field for liquid hydrogen fluoride. The ab initio MD in this case was a Car-Parrinello (CP) MD simulation of 64 HF molecules at nearly ambient conditions within the Becke-Lee-Yang-Parr approximation to the electronic density functional theory. The force-matching procedure included a fit of short-ranged nonbonded forces, bonded forces, and atomic partial charges. The performance of the force-match potential was examined for the gas-phase dimer and for the liquid phase at various temperatures. The model was able to reproduce correctly the bent structure and energetics of the gas-phase dimer, while the results for the structural properties, self-diffusion, vibrational spectra, density, and thermodynamic properties of liquid HF were compared to both experiment and the CP MD simulation. The force-matching model performs well in reproducing nearly all of the liquid properties as well as the aggregation behavior at different temperatures. The model is computationally cheap and compares favorably to many more computationally expensive potential energy functions for liquid HF.  相似文献   
4.
The vibrational energy relaxation rates of excited Si---H stretching modes on the monohydride steps of miscut H/Si(111) 1×1 surfaces are calculated using Bloch-Redfield theory combined with classical molecular dynamics (MD) simulation. The structure and vibrational frequencies of the surface are first investigated using the Car-Parrinello ab initio MD method. The calculated Si---Si---H bending frequencies and relaxed structures are then used to refine the empirical potential for the classical MD simulations. The lifetime of the excited Si---H stretching mode at the step is found to be shorter than the modes on the terrace. Both the magnitude and the trend of the calculated results agree well with the experimental measurement on the 9° monohydride stepped surface. The vibrational relaxation rate of the Si---H stretching modes on the 15° monohydride stepped surface are also calculated and predicted to have a slightly shorter lifetime than for the 9° surface.  相似文献   
5.
The solvation and transport of the hydrated excess proton is studied using the Car-Parrinello molecular-dynamics (CPMD) simulation method. The simulations were performed using BLYP and HCTH gradient-corrected exchange-correlation energy functionals. The fictitious electronic mass was chosen to be small enough so that the underlying water structural and dynamical properties were converged with respect to this important CPMD simulation parameter. An unphysical overstructuring of liquid water in the CPMD simulations using the BLYP functional resulted in the formation of long-lived hydrogen-bonding structures involving the excess proton and a particular (special) water oxygen. The excess proton was observed to be attracted to the special oxygen through the entire length of the BLYP CPMD simulations. Consequently, the excess proton diffusion was limited by the mobility of the special oxygen in the slowly diffusing water network and, in turn, the excess proton self-diffusion coefficient was found to be significantly below the experimental value. On the other hand, the structural properties of liquid water in the HCTH CPMD simulation were seen to be in better agreement with experiment, although the water and excess proton diffusions were still well below the experimental value.  相似文献   
6.
A nonequilibrium molecular dynamics simulation of the response of dimyristoylphosphatidylcholine (DMPC) bilayers to a solvent shear flow is presented. Application of shear flow to planar, stationary DMPC bilayers results in a redistribution of the membrane density profile along the bilayer normal due to the alignment of the lipids in the direction of flow and an increase in average lipid chain length. An increase in the intermolecular and intramolecular order of the lipids in response to the shear flow is also observed. This study provides groundwork for understanding the mechanism of the full response of lipid bilayers to externally imposed solvent shear flows, beginning with the response in the absence of collective lipid motions such as undulations and bilayer flow.  相似文献   
7.
8.
9.
Theβ-decay energies of147Eu,147Gd, and151Tb were determined by usingγ-spectroscopical methods. The comparison of experimental with calculatedK-capture probabilities yielded theQ EC values 1.690( ?16 +21 )MeV and 2.203( ?13 +19 )MeV for147Eu and147Gd, respectively. By measuring the ratio of positron decay to electron capture for two branches in147Eu decay, the decay energiesQ EC=1.702(13) MeV andQ EC=1.709(18)MeV were derived. Also fromEC/β + ratios the valuesQ EC=2.225(75) MeV for147Gd, andQ EC=2.566(12)MeV for151Tb were obtained. Earlier discrepancies in the mass adjustment of these isotopes were removed. In course of the present studiesγ-decay properties of147Eu and147Gd were reinvestigated.  相似文献   
10.
A multiscale coarse-graining model for ionic liquids has been extended to investigate the unique aggregation of cations in ionic liquids through computer simulation. It has been found that, with sufficiently long side chains, the tail groups of cations aggregate to form spatially heterogeneous domains, while headgroups of the cations and the anions distribute as uniformly as possible. This is understood as the result of competition between the charged electrostatic interactions between headgroups and anions and the collective short-range interactions between the neutral tail groups. This aggregation can help to explain a number of experimentally observed physical phenomena in ionic liquids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号