首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   10篇
化学   172篇
数学   24篇
物理学   21篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   8篇
  2016年   4篇
  2015年   7篇
  2014年   18篇
  2013年   11篇
  2012年   14篇
  2011年   22篇
  2010年   4篇
  2009年   5篇
  2008年   15篇
  2007年   15篇
  2006年   11篇
  2005年   17篇
  2004年   18篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
1.
It is proved that if a graphG has maximum degreed, then its vertices can be represented by distinct unit vectors inR 2d so that two vectors are orthogonal if and only if the corresponding vertices are adjacent. As a corollary it follows that if a graph has maximum degreed, then it is isomorphic to a unit distance graph inR 2d.  相似文献   
2.
The electroanalytical determination of avidin in solution, in a carbon paste, and in a transgenic maize extract was performed in acidic medium at a carbon paste electrode (CPE). The oxidative voltammetric signal resulting from the presence of tyrosine and tryptophan in avidin was observed using square-wave voltammetry. The process could be used to determine avidin concentrations up to 3 fM (100 amol in 3 l drop) in solution, 700 fM (174 fmol in 250 l solution) in an avidin-modified electrode, and 174 nM in a maize seed extract. In the case of the avidin-modified CPE, several parameters were studied in order to optimize the measurements, such as electrode accumulation time, composition of the avidin-modified CPE, and the elution time of avidin. In addition, the avidin-modified electrode was used to detect biotin in solution (the detection limit was 7.6 pmol in a 6 l drop) and to detect biotin in a pharmaceutical drug after various solvent extraction procedures. Comparable studies for the detection of biotin were developed using HPLC with diode array detection (HPLC-DAD) and flow injection analysis with electrochemical detection, which allowed biotin to be detected at levels as low as 614 pM and 6.6 nM, respectively. The effects of applied potential, acetonitrile content, and flow rate of the mobile phase on the FIA-ED signal were also studied.  相似文献   
3.
Synchrotron-based high-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of gold with titania and the chemistry of SO(2) on Au/TiO(2)(110) surfaces. The deposition of Au nanoparticles on TiO(2)(110) produces a system with an extraordinary ability to adsorb and dissociate SO(2). In this respect, Au/TiO(2) is much more chemically active than metallic gold or stoichiometric titania. On Au(111) and rough polycrystalline surfaces of gold, SO(2) bonds weakly and desorbs intact at temperatures below 200 K. For the adsorption of SO(2) on TiO(2)(110) at 300 K, SO(4) is the only product (SO(2) + O(oxide) --> SO(4,ads)). In contrast, Au/TiO(2)(110) surfaces (theta;(Au) < or = 0.5 ML) fully dissociate the SO(2) molecule under identical reaction conditions. Interactions with titania electronically perturb gold, making it more chemically active. Furthermore, our experimental and theoretical results show quite clearly that not only gold is perturbed when gold and titania interact. The adsorbed gold, on its part, enhances the reactivity of titania by facilitating the migration of O vacancies from the bulk to the surface of the oxide. In general, the complex coupling of these phenomena must be taken into consideration when trying to explain the unusual chemical and catalytic activity of Au/TiO(2). In many situations, the oxide support can be much more than a simple spectator.  相似文献   
4.
MOFs are promising candidates for the capture of toxic gases since their adsorption properties can be tuned as a function of the topology and chemical composition of the pores. Although the main drawback of MOFs is their vulnerability to these highly corrosive gases which can compromise their chemical stability, remarkable examples have demonstrated high chemical stability to SO2, H2S, NH3 and NOx. Understanding the role of different chemical functionalities, within the pores of MOFs, is the key for accomplishing superior captures of these toxic gases. Thus, the interactions of such functional groups (coordinatively unsaturated metal sites, μ-OH groups, defective sites and halogen groups) with these toxic molecules, not only determines the capture properties of MOFs, but also can provide a guideline for the desigh of new multi-functionalised MOF materials. Thus, this perspective aims to provide valuable information on the significant progress on this environmental-remediation field, which could inspire more investigators to provide more and novel research on such challenging task.

MOFs are promising candidates for the capture of toxic gases such as SO2, H2S, NH3 and NOx. Understanding the role of different chemical functionalities, within the pores of MOFs, is the key for accomplishing superior captures of these toxic gases.  相似文献   
5.
6.
Temperature programmed desorption (TPD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM) have been used to characterize molybdenum carbide nanoparticles prepared on a Au(111) substrate. The MoC(x) nanoparticles were formed by Mo metal deposition onto a reactive multilayer of ethylene, which was physisorbed on a Au(111) substrate at low temperatures (<100 K). The resulting clusters have an average diameter of approximately 1.5 nm and aggregate in the fcc troughs located on either side of the elbows of the reconstructed Au(111) surface. Core level XPS shows that the electronic environment of the Mo and C atoms in the nanoparticles is similar to that found in Mo(2)C(0001) single crystals and carburized Mo metal surfaces. Peak intensities in XPS and AES spectra were used to estimate an average Mo/C atomic ratio of 1.2 +/- 0.3 for nanoparticles annealed above 600 K.  相似文献   
7.
Cisplatin, carboplatin, and oxaliplatin represent three generations of platinum based drugs applied successfully for cancer treatment. As a consequence of the employment of platinum based cytostatics in the cancer treatment, it became necessary to study the mechanism of their action. Current accepted opinion is the formation of Pt‐DNA adducts, but the mechanism of their formation is still unclear. Nanomaterials, as a progressively developing branch, can offer a tool for studying the interactions of these drugs with DNA. In this study, fluorescent CdTe quantum dots (QDs, λem = 525 nm) were employed to investigate the interactions of platinum cytostatics (cisplatin, carboplatin, and oxaliplatin) with DNA fragment (500 bp, c = 25 μg/mL). Primarily, the fluorescent behavior of QDs in the presence of platinum cytostatics was monitored and major differences in the interaction of QDs with tested drugs were observed. It was found that the presence of carboplatin (c = 0.25 mg/mL) had no significant influence on QDs fluorescence; however cisplatin and oxaliplatin quenched the fluorescence significantly (average decrease of 20%) at the same concentration. Subsequently, the amount of platinum incorporated in DNA was determined by QDs fluorescence quenching. Best results were reached using oxaliplatin (9.4% quenching). Linear trend (R2 = 0.9811) was observed for DNA platinated by three different concentrations of oxaliplatin (0.250, 0.125, and 0.063 mg/mL). Correlation with differential pulse voltammetric measurements provided linear trend (R2 = 0.9511). As a conclusion, especially in the case of oxaliplatin‐DNA adducts, the quenching was the most significant compared to cisplatin and nonquenching carboplatin.  相似文献   
8.
Kominkova  Marketa  Michalek  Petr  Moulick  Amitava  Nemcova  Barbora  Zitka  Ondrej  Kopel  Pavel  Beklova  Miroslava  Adam  Vojtech  Kizek  Rene 《Chromatographia》2014,77(21):1441-1449

Biosynthesis belongs to one of the new possibilities of nanoparticles preparation, whereas its main advantage is biocompatibility. In addition, the ability of obtaining the raw material for such synthesis from the soil environment is beneficial and could be useful for remediation. However, the knowledge of mechanisms that are necessary for the biosynthesis or effect on the bio-synthesizing organisms is still insufficient. In this study, we attempted to evaluate the effect of quantum dots (QDs) not only on a model organism of collembolans, but also on another soil organism—earthworm Eisenia fetida—and in also one widespread microorganism such as Escherichia coli. Primarily, we determined 28EC50 as 72.4 μmol L−1 for CdTe QDs in collembolans. Further, we studied the effect of QDs biosynthesis in E. fetida and E. coli. Using determination of QDs, low-molecular thiols and antioxidant activities, we found differences between both organisms and also between ways how they behave in the presence of Cd and/or Cd and Te. The biosynthesis in earthworms can be considered as its own protective mechanism; however, in E. coli, it is probably a by-product of protective mechanisms.

  相似文献   
9.
Quantum dots (QDs) are one of the most promising nanomaterials, due to their size‐dependent characteristics as well as easily controllable size during the synthesis process. They are promising label material and their interaction with biomolecules is of great interest for science. In this study, CdTe QDs were synthesized under optimal conditions for 2 nm size. Characterization and verification of QDs synthesis procedure were done by fluorimetric method and with CE. Afterwards, QDs interaction with chicken genomic DNA and 500 bpDNA fragment was observed employing CE‐LIF and gel electrophoresis. Performed interaction relies on possible matching between size of QDs and major groove of the DNA, which is approximately 2.1 nm.  相似文献   
10.
Monosaccharides are added to the hydrophilic face of a self‐assembled asymmetric FeII metallohelix, using CuAAC chemistry. The sixteen resulting architectures are water‐stable and optically pure, and exhibit improved antiproliferative selectivity against colon cancer cells (HCT116 p53+/+) with respect to the non‐cancerous ARPE‐19 cell line. While the most selective compound is a glucose‐appended enantiomer, its cellular entry is not mainly glucose transporter‐mediated. Glucose conjugation nevertheless increases nuclear delivery ca 2.5‐fold, and a non‐destructive interaction with DNA is indicated. Addition of the glucose units affects the binding orientation of the metallohelix to naked DNA, but does not substantially alter the overall affinity. In a mouse model, the glucose conjugated compound was far better tolerated, and tumour growth delays for the parent compound (2.6 d) were improved to 4.3 d; performance as good as cisplatin but with the advantage of no weight loss in the subjects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号