首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   4篇
晶体学   2篇
物理学   9篇
  2021年   1篇
  2013年   2篇
  2009年   1篇
  2008年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  1998年   2篇
  1995年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
The magnetic properties of nanocrystalline titanium carbide dispersed in a carbon matrix (TiCx/C) prepared by the non-hydrolytic sol–gel process have been studied by dc magnetization measurements. The superconducting phase of titanium carbide has been observed at low temperatures with the onset of the superconducting transition temperature Tc at about 3.5 K, superimposed on a ferromagnetic component. At T > Tc the magnetic response of TiCx/C is determined by the interplay of the ferromagnetic contribution with the paramagnetic/diamagnetic signal of the metallic system and the contribution of exchange coupled paramagnetic ions. Moreover, significant differences are observed in the magnetic response for samples of the same preparation batch, indicative of the magnetic/electronic inhomogeneity of nanocrystalline titanium carbide which is important for its practical applications.  相似文献   
2.
3.
The temperature dependence of the EPR spectra of the recently discovered Ag6S3O4 phase in the Ag-O-S system prepared by two methods, the known method of co-precipitation from aqueous solution and a new method depending on the interaction of Ag2S and Ag2SO4 solid reagents, has been investigated. No EPR spectra were observed at room temperature, while at liquid helium temperature a number of EPR spectra have been recorded, which disappeared upon increasing temperature up to liquid nitrogen temperature. The sample obtained by the co-precipitation method revealed an intense, rich EPR spectrum that has been tentatively interpreted assuming the presence of at least two different Ag2+ ion complexes, one monomer resulting in an intense anisotropic, rhombic EPR powder pattern with g1 = 1.93(1), g2 = 2.025(3), g3 = 2.094(5), hyperfine constants A1 = = A2 = 60(5) · 10?4 cm?1,A 3 = 90(5) · 10?4 cm?1 and one dimer EPR pattern presumably involving a pair of Ag2+ ions with internuclear separation of 4.3 Å. However, the presence of larger clusters could not be excluded. On the other hand, the sample obtained by a solid state reaction method has given rise to two rather weak EPR lines centered at geff = 2.105(3) and geff = 4.213(3), respectively.  相似文献   
4.
A two component model of negative U centers coupled with the Fermi sea of itinerant fermions is discussed in connection with high-temperature superconductivity of cuprates, and superfluidity of atomic fermions. We examine the phase transition and the condensed state of this boson-fermion model (BFM) beyond the ordinary mean-field approximation in two and three dimensions. No pairing of fermions and no condensation are found in two-dimensions for any symmetry of the order parameter. The expansion in the strength of the order parameter near the transition yields no linear homogeneous term in the Ginzburg-Landau-Gorkov equation and a zero upper critical field in any-dimensional BFM, which indicates that previous mean-field discussions of the model are flawed. Normal and anomalous Greens functions are obtained diagrammatically and analytically in the condensed state of a simplest version of 3D BFM. A pairing of bosons analogous to the Cooper pairing of fermions is found. There are three coupled condensates in the model, described by the off-diagonal single-particle boson, pair-fermion and pair-boson fields. These results negate the common wisdom that the boson-fermion model is adequately described by the BCS theory at weak coupling.Received: 26 February 2004, Published online: 18 June 2004PACS: 74.20.-z Theories and models of superconducting state - 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) - 74.20.Rp Pairing symmetries (other than s-wave) - 74.25.Dw Superconductivity phase diagrams  相似文献   
5.
6.
The neutron diffraction patterns of Mg2FeV3O11-δ compound at various low temperatures have been investigated. No magnetic ordering was observed in the investigated temperature range down to 10K. These materials have been formed in the triclinic space group but there are specific differences in the positions of atoms as compared to previously determined from XRD method. The iron(III) ions are distributed non-statistically with magnesium(II) ions and this could be responsible for some differences in the structure of the above sample. The method of sample preparation, in particularly thermal annealing processes could be responsible for the differences.  相似文献   
7.
The temperature dependence of the EPR spectrum for the α-phase of iron tungstate has been investigated in the temperature range of 40–260 K. At temperatures betweenT 1 ≈ 250 K andT 2 ≈ 205 K where the antiferromagnetic phase transition occurs, a relatively narrow EPR line arising from the dominant iron(III) species has emerged, gaining intensity with the temperature increase. Its linewidth temperature evolution could be described by Huber equation, with TN = 200 K, which is consistent with the peak seen in magnetic susceptibility measurements, while the correspondingg-factor shifts to higher fields reflecting the build-up of internal field emerging from increasing shortrange order in the spin system. At temperatures lower than T2, a very broad and distorted EPR line with temperature dependentg-factor and linewidth has been observed reflecting the corresponding rise of the magnetic susceptibility below the antiferromagnetic phase transition, presumably arising from magnetic clusters embedded in the antiferromagnetic background.  相似文献   
8.
The magnetic properties of the rare earth molecular compounds with hydrazone ligands containing Nd3+, Gd3+, and Yb3+ have been investigated by electron paramagnetic resonance (EPR) and magnetization measurements. For the Gd-compound, partially resolved fine structure due to Gd3+ and exchange narrowing effects at low temperatures are observed in the EPR spectra, suggesting, consistent with the EPR and dc magnetic susceptibility, weak antiferromagnetic exchange interactions. Paramagnetic behavior sustained down to low temperatures is derived for Yb3+ ions, whereas substantial ferromagnetic exchange coupling is inferred for the lighter Nd3+ ions, indicating significant variations of the exchange integrals along the lanthanide series. Received 29 April 2002 Published online 31 July 2002  相似文献   
9.
We have employed magnetization measurements, M?ssbauer and ESR spectroscopic techniques, in order to study the ferromagnetic insulating (FMI) compound La1-xCaxMnO3 (x=0.175) doped with 1% 57Fe. We have used two samples; one prepared in air which has cation vacancies and a second in inert atmosphere, which is stoichiometric. An abrupt change of the experimental results is obtained, by all techniques, in the ferromagnetic insulating regime, in the temperature region of TO/O//≈60 K, where an orbital rearrangement is suggested to occur. An analysis of these findings points to an orbital rearrangement transformation. Ferromagnetic resonance reveals considerable differences between stoichiometric and cation deficient samples, indicating anisotropy of the exchange interactions in the former sample with significant temperature dependence, most pronounced in the vicinity of TO/O//  相似文献   
10.
The polymorphic modifications α-, β-, and γ-Fe2WO6 of the iron tungstate system were studied by means of magnetic susceptibility and EPR measurements at low temperatures. Both methods revealed a significant paramagnetic contribution, probably resulting from local distortions of the antiferromagnetic bulk structure induced by a disturbed cation ordering or the presence of Fe2+ ions. The magnetic susceptibility revealed a peak at 260 K for all samples which can be related with an AF phase transition. The EPR spectra comprised the contribution of various isolated paramagnetic iron centers, one arising from high-spin Fe3+ ions in rhombic crystal field symmetry with E/D ≈ 1/3 and D ≈ 0.22 cm-1, an anisotropic EPR signal consistent with an S= 3/2 ground state with large zero-field splitting, and a dominant component in the g ≈ 2 region presumably arising from an S = 1/2; spin state. The latter spectra were tentatively attributed to the formation of multi-iron clusters, one of them invoking the presence of Fe2+ ions as well. For the βFe2WO6 phase an additional EPR spectrum was observed, which probably results from high-spin Fe3+ ions in a weak crystal field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号