首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2009年   1篇
  2008年   1篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The interaction of thalidomide (TD) with double-stranded DNA (dsDNA) was studied using atomic force microscopy (AFM) at highly oriented pyrolytic graphite (HOPG), differential pulse voltammetry (DPV) at glassy carbon electrodes (GCE), UV–Vis and electrophoresis. After incubation of dsDNA with different concentrations of TD, the AFM images show the formation of thin and incomplete TD–DNA network films with a number of embedded molecular aggregates and regions of uncovered HOPG. Both the TD–dsDNA aggregates and network thickness directly depended on the TD concentration and incubation time. The voltammetric data also showed that the modifications caused by TD to the DNA double helical structure are time-dependent. In agreement with AFM, DPV, UV–Vis and electrophoresis results, a model is proposed for the TD–DNA interaction, considering that TD intercalates into the dsDNA, causing defects in the dsDNA secondary structure and DNA double helix unwinding. Moreover, both AFM and DPV show that condensation is caused to DNA by TD and occurs until 24 h of incubation, as well as DNA oxidative damage, detected electrochemically by the appearance of the 8-oxoGua and/or 2,8 oxoAde oxidation peak.  相似文献   
2.
Adriamycin intercalation and in situ interaction with double helix DNA was investigated using a voltammetric DNA-biosensor. Oxidation and reduction of adriamycin molecules intercalated in double helix DNA were investigated in order to understand the in vivo mechanism of action with this anti-neoplasic drug. The results showed that the interaction of adriamycin with DNA is potential-dependent causing contact between DNA guanine and adenine bases and the electrode surface such that their oxidation is easily detected. A mechanism for adriamycin reduction and oxidation in situ when intercalated in double helix DNA immobilised onto the glassy carbon electrode surface is presented and the formation of the mutagenic 8-oxoguanine explained.  相似文献   
3.
A thermotropic, liquid crystalline copolyester, based on 2-chlorohydroquinone, 1,4-cyclohexanedimethanol and terephthaloyl chloride, has been synthesized and melt spun. The cyclohexanedimethylene moiety acts as a semirigid spacer, introducing flexibility while preserving the thermotropic nature of the polymer. Melt-spun fibers were observed to have a high degree of molecular alignment owing to the nematic nature of the melt. Both polymer and fiber properties have been characterized. Characterization techniques used to this end include elemental analysis, hot-stage polarized light microscopy, scanning electron microscopy, dilute solution viscometry, Fourier transform infrared spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1473–1480, 1998  相似文献   
4.
The extraction and clean-up procedures developed to isolate the water-soluble arsenic species present in the marine macroalga Fucus distichus, from British Columbia, Canada, are described. The arsenic species were extracted into methanol and then subjected to gel-permeation and ion-exchange chromatography. Fractions high in arsenic were identified by using graphite furnace atomic absorption spectroscopy (GF-AAS), and further investigated by using high-performance liquid chromatography coupled to inductively coupled plasma–mass spectrometry (HPLC–ICP MS). By using different HPLC columns and mobile-phase conditions, the four major arsenic-containing compounds present in the macroalga were positively identified as arsenosugars; one minor compound remained unidentified. © 1997 John Wiley & Sons, Ltd.  相似文献   
5.
Poly[oxy(2-methyl-1,4-phenylene)oxyterephthaloyl-co-oxymethylene-1,4-cyclohexylene-methyleneoxyterephthaloyl] was synthesized using a solution-based process. This copolyester has cyclohexylene dimethylene as a semi-rigid spacer along the polymer main chain to interrupt the inherent rigidity of the system while preserving the mesogenicity of the macromolecules. Polymer characterization includes elemental analysis, Fourier transform infrared spectroscopy, nuclear magnetic resonance, hot-stage polarized light microscopy, wide-angle x-ray diffraction, dilute solution viscometry, differential scanning calorimetry, and thermogravimetric analysis. This copolyester shows nematic liquid crystalline behavior in polarized light above about 240°C. The intrinsic and inherent viscosities are 0.88 and 0.68 dL/g respectively. The observed melting temperature of this copolyester is about 265°C, but melting begins as low as 215°C, making the polymer readily melt-processable. The degradation temperature is about 340°C under a nitrogen atmosphere. © 1995 John Wiley & Sons, Inc.  相似文献   
6.
Thalidomide is an oral drug marketed in the 1950s as a sedative and an anti‐emetic during pregnancy that was removed from the market when its teratogenic side effects appeared in new born children due to inadequate tests to assess the drug's safety. Recent studies evaluating the use of thalidomide in cancer and HIV diseases have sparked renewed interest. The electrochemical behavior of thalidomide on a glassy carbon electrode has been investigated using cyclic, differential and square‐wave voltammetry in aqueous media at different pHs. The oxidation mechanism of thalidomide is an irreversible, adsorption‐controlled process, pH dependent up to values close to the pKa and occurs in two consecutive charge transfer reactions. A mechanism of oxidation of thalidomide involving one electron and one proton to produce a cation radical, which reacts with water and yields a final hydroxylated product is proposed. The reduction of thalidomide is also a pH dependent, irreversible process and occurs in a single step, with the same number of electrons and protons transferred. The reduction mechanism involves the protonation of the nitrogen that bridges the two cyclic groups, and the product of the protonation reaction causes irreversible dissociation. Both thalidomide and the non electroactive oxidation and reduction products are strongly adsorbed on the glassy carbon electrode surface.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号