首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   10篇
数学   1篇
物理学   3篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1995年   1篇
  1965年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Multiple-zero multiple-pole optical filter transfer functions may be implemented more efficiently in an integrated optics architecture if higher order N × M optical couplers are utilized. For example, a coherent ring resonator made from two 3×3 couplers offers some advantages over the three mirror Fabry-Perot etalon, which is its analog. To this end we develop the formalism for obtaining the transfer functions and scattering matrices of ring resonators made from two N × M couplers. We then present a methodology for analyzing serial and parallel systems of N × M optical coupler ring resonators.  相似文献   
2.
A liquid chromatographic mass spectrometric (LC‐MS) assay has been developed for cyclosporine A (CyA) in rat plasma using amiodarone as internal standard (IS). Rat plasma (100 µL) containing drug and IS were extracted using liquid–liquid extraction with 4 mL of 95:5 ether:methanol. After evaporation of the organic layer the residue was reconstituted with 500 µL of water. Then the aqueous layer was transferred to LC‐MS sample vials. A 10 µL volume was injected. The analysis was performed on a C8 column 3.5 µm (2.1 × 50 mm) heated to 60°C with a mobile phase consisting of acetonitrile:methanol:0.2% NH4OH (60:20:20) at an isocratic flow‐rate of 0.2 mL/min. The ions used for quantitation of CyA and IS were m/z 1202.8 and 645.9, with retention times of 3.35 and 4.72 min, respectively. Linear relationships (r2 > 0.99) were achieved between plasma or blood concentration and peak height ratios (drug:IS) over the concentration range 50–5000 ng/mL. The CV% and mean error were <19%. Based on validation data, the lower limit of quantification for the assay was 50 ng/mL. The reported assay method displayed high measures of linearity, sensitivity, reliability and precision, allowing its applicability in pharmacokinetic studies in rat. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
3.
A liquid chromatographic-mass spectrometry (LC/MS) assay method was developed for the determination of amiodarone and desethylamiodarone in rat specimens. Analytes were extracted using liquid-liquid extraction in hexane. The LC/MS system consisted of a Waters Micromass ZQtrade mark 4000 spectrometer with an autosampler and pump. A C(18) 3.5 microm (2.1 x 50 mm) column heated to 45 degrees C was used for separation. The mobile phase consisted of methanol and 0.2% aqueous formic acid pumped at 0.2 mL/min as a linear gradient. Components eluted within 12 min. The concentrations of ethopropazine (internal standard), desethylamiodarone and amiodarone were monitored for m/z of 313.10, combination of 546.9 and 617.73, and 645.83, respectively. In plasma (0.1 mL), linearity was achieved between the peak area ratios and concentrations over the range of 2.5-1000 ng/mL for both amiodarone and desethylamiodarone (r(2) > 0.999). The intraday and interday CV were equal or less than 18%, and mean error was <12%. Similarly, in homogenates containing 0.1 g of rat tissue, linearity was observed in standards ranging from 5 to 5000 ng/g. The method was successfully used to measure tissue and plasma concentrations of drug. The validated lower limit of quantitation was 2.5 ng/mL for drug and metabolite, based on 0.1 mL of plasma.  相似文献   
4.
A liquid chromatographic mass spectrometric assay for the quantification of azithromycin in human plasma was developed. Azithromycin and imipramine (as internal standard, IS) were extracted from 0.5 mL human plasma using extraction with diethyl ether under alkaline conditions. Chromatographic separation of drug and IS was performed using a C18 column at room temperature. A mobile phase consisting of methanol, water, ammonium hydroxide and ammonium acetate was pumped at 0.2 mL/min. The mass spectrometer was operated in positive ion mode and selected ion recording acquisition mode. The ions utilized for quantification of azithromycin and IS were m/z 749.6 (M + H) + and m/z 591.4 (fragment) for azithromycin, and 281.1 m/z for internal standard; retention times were 6.9 and 3.4 min, respectively. The calibration curves were linear (r2 > 0.999) in the concentration ranges of 10–1000 ng/mL. The mean absolute recoveries for 50 and 500 ng/mL azithromycin and 1 µg/ mL IS were >75%. The percentage coefficient of variation and mean error were <11%. Based on validation data, the lower limit of quantification was 10 ng/mL. The present method was successfully applied to determine azithromycin pharmacokinetic parameters in two obese volunteers. The assay had applicability for use in pharmacokinetic studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
Thermoreversible polymeric biomaterials are finding increased acceptance in tissue engineering applications. One drawback of the polymers is their synthetic nature, which does not allow direct interaction of mammalian cells with the polymers. This limitation may be alleviated by grafting arginine–glycine–aspartic acid (RGD) containing peptides onto the polymer backbone to facilitate interactions with cell‐surface integrins. Toward this goal, N‐isopropylacrylamide (NiPAM)‐based thermoreversible polymers containing amine‐reactive N‐acryloxysuccinimide (NASI) groups were synthesized. Conjugation of RGD‐containing peptides to polymers was demonstrated with 1H NMR spectroscopy and reverse‐phase high‐pressure liquid chromatography. The conjugation reaction was optimal at 4 °C and pH of 8.0, and increased with the increasing NASI content of polymers. With a peptide grafting ratio of 0.25 mol %, there was no significant change in the lower critical solution temperature of the polymers. Finally, the NASI‐containing polymers, cast as films, on tissue culture polystyrene, were shown to conjugate to RGD‐containing peptides and support C2C12 cell attachment. We conclude that NASI‐containing thermoreversible polymers are amenable for grafting biomimetic peptides to impart cell adhesiveness to the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3989–4000, 2003  相似文献   
6.

Background  

M.tb icd-1 and M.tb icd-2, have been identified in the Mycobacterium tuberculosis genome as probable isocitrate dehydrogenase (ICD) genes. Earlier we demonstrated that the two isoforms can elicit B cell response in TB patients and significantly differentiate TB infected population from healthy, BCG-vaccinated controls. Even though immunoassays suggest that these proteins are closely related in terms of antigenic determinants, we now show that M.tb icd-1 and M.tb icd-2 code for functional energy cycle enzymes and document the differences in their biochemical properties, oligomeric assembly and phylogenetic affiliation.  相似文献   
7.
We report on the application of biodegradable cyclic poly(L ‐lactide) (PLLA) as new stabilizer; synthesis and application of a cyclic PLLA‐clay hybrid material as recyclable catalyst support. Cyclic PLLAs were used to stabilize palladium nanoparticles synthesized by a wet chemical method. It was found that the palladium particles were smaller with cyclic PLLA stabilizer (~5–10 nm) than the particles obtained from linear PLLA. The cyclic PLLA‐clay hybrid was prepared by a zwitterionic ring‐opening polymerization catalyzed by in situ‐generated N‐heterocyclic carbene catalyst. Palladium (0) nanoparticles were supported and well dispersed on the cyclic PLLA‐clay hybrid to form a new nanocomposite. The nanocomposite was found to be a highly efficient and recyclable catalyst for the aminocarbonylation reactions of aryl halides with various amines. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4167–4174  相似文献   
8.
In situ synthesis method is used to synthesize g-C3N4-P25 composite photocatalysts with different mass rations. The experiment result shows that P25 particles with diameter at range of 20–30 nm were embedded homogenously in the sheets of g-C3N4. Coupling g-C3N4 with P25 can not only improve the visible light absorption, but also improve the visible light photocatalytic activity of P25. The g-C3N4-P25 nanocomposite has the higher photocatalytic activity than g-C3N4 under visible light. The optimal g-C3N4 content with the highest photocatalytic activity is determined to be 84 %, which is almost 3.3 times higher than that of individual g-C3N4 under the visible light. The enhanced visible light photocatalytic activity could be ascribed to the formation of g-C3N4 and TiO2 heteojunction, which results in an efficient separation and transfer of photo-induced charge carriers. The electron spin resonance results show that the ·O2 ? radicals are main active species for g-C3N4 and the g-C3N4-P25 nanocomposites.  相似文献   
9.
A new application of Julia-Kocienski olefination for the synthesis of chalcones and flavanones has been described. 2-(Benzo[d]thiazol-2-ylsulfonyl)-1-phenylethanones have been developed as new reagents for direct Julia-Kocienski olefination with aldehydes in the presence of a base, afforded chalcones in good to excellent yields. Whereas, 2-(benzo[d]thiazol-2-ylsulfonyl)-1-(2-hydroxyphenyl)ethanone reacted with the aromatic aldehydes to furnish flavanones in good yields via one-pot intra-molecular cyclization.  相似文献   
10.
Poly(ethylene imine) (PEI), a highly cationic polymer, is being used for deoxyribonucleic acid (DNA) complexation and delivery into cells. To enhance the cellular uptake of polymer/DNA complexes, arginine–glycine–aspartic acid (RGD) peptides have been conjugated to PEI with N‐succinimidyl 3‐(2‐pyridyldithio)propionate (SPDP). This coupling scheme creates a disulfide‐linked conjugate, the stability of which in the presence of thiols is uncertain. We have investigated the conjugation of an RGD peptide, glycine–arginine–glycine–aspartic acid–serine–proline–cysteine (GRGDSPC), to PEI with SPDP and subsequently assessed the stability of the conjugates in the presence of two thiol compounds, mercaptoethanol and cysteine. SPDP effectively controls the extent of GRGDSPC substitution on PEI. The conjugates, however, are readily cleaved in the presence of the thiols; the cleavage is rapid (~50% cleavage in 2–4 h) and inversely related to the degree of peptide substitution on the polymers. The peptide coupling is stable in the absence of thiols, and its cleavage is strongly dependent on the pH of the medium but not on the ionic strength of the medium. We conclude that RGD peptides coupled to PEI are labile in the presence of physiological concentrations of thiols, and this should be taken into account when such polymer–peptide conjugates are used for DNA delivery. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6143–6156, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号