首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   3篇
晶体学   1篇
物理学   1篇
  2013年   1篇
  2006年   1篇
  2005年   1篇
  1998年   1篇
  1973年   1篇
排序方式: 共有5条查询结果,搜索用时 9 毫秒
1
1.
The novel NAD+-linked opine dehydrogenase from a soil isolate Arthrobacter sp. strain 1C belongs to an enzyme superfamily whose members exhibit quite diverse substrate specificites. Crystals of this opine dehydrogenase, obtained in the presence or absence of co-factor and substrates, have been shown to diffract to beyond 1.8 ? resolution. X-ray precession photographs have established that the crystals belong to space group P21212, with cell parameters a = 104.9, b = 80.0, c = 45.5 ? and a single subunit in the asymmetric unit. The elucidation of the three-dimensional structure of this enzyme will provide a structural framework for this novel class of dehydrogenases to enable a comparison to be made with other enzyme families and also as the basis for mutagenesis experiments directed towards the production of natural and synthetic opine-type compounds containing two chiral centres.  相似文献   
2.
(Eta6-naphthalene)Mn(CO)(3)(+) is reduced reversibly by two electrons in CH(2)Cl(2) to afford (eta4-naphthalene)Mn(CO)(3)(-). The chemical and electrochemical reductions of this and analogous complexes containing polycyclic aromatic hydrocarbons (PAH) coordinated to Mn(CO)(3)(+) indicate that the second electron addition is thermodynamically easier but kinetically slower than the first addition. Density functional theory calculations suggest that most of the bending or folding of the naphthalene ring that accompanies the eta6 --> eta4 hapticity change occurs when the second electron is added. As an alternative to further reduction, the 19-electron radicals (eta6-PAH)Mn(CO)(3) can undergo catalytic CO substitution when phosphite nucleophiles are present. Chemical reduction of (eta6-naphthalene)Mn(CO)(3)(+) and analogues with one equivalent of cobaltocene affords a syn-facial bimetallic complex (eta4,eta6-naphthalene)Mn(2)(CO)(5), which contains a Mn-Mn bond. Catalytic oxidative activation under CO reversibly converts this complex to the zwitterionic syn-facial bimetallic (eta4,eta6-naphthalene)Mn(2)(CO)(6), in which the Mn-Mn bond is cleaved and the naphthalene ring is bent by 45 degrees . Controlled reduction experiments at variable temperatures indicate that the bimetallic (eta4,eta6-naphthalene)Mn(2)(CO)(5) originates from the reaction of (eta4-naphthalene)Mn(CO)(3)(-) acting as a nucleophile to displace the arene from (eta6-naphthalene)Mn(CO)(3)(+). Heteronuclear syn-facial and anti-facial bimetallics are formed by the reduction of mixtures of (eta6-naphthalene)Mn(CO)(3)(+) and other complexes containing a fused polycyclic ring, e.g., (eta5-indenyl)Fe(CO)(3)(+) and (eta6-naphthalene)FeCp(+). The great ease with which naphthalene-type manganese tricarbonyl complexes undergo an eta6 --> eta4 hapticity change is the basis for the formation of both the homo- and heteronuclear bimetallics, for the observed two-electron reduction, and for the far greater reactivity of (eta6-PAH)Mn(CO)(3)(+) complexes in comparison to monocyclic arene analogues.  相似文献   
3.
Intercalates of o-, m-, and p-toluidine into α-Zr(HPO4)2 · H2O were prepared and characterized by powder X-ray diffraction, thermogravimetric analysis and infrared spectroscopy. As follows from IR, toludine molecules are protonated in the interlayer space. Toluidine molecules are arranged in a bimolecular way in the intercalates containing more than 1.5 toluidine molecules per Zr atom. On the other hand, a monolayer of the toluidine molecules is supposed in the intercalates with less than one toluidine molecule per Zr atom.  相似文献   
4.
The free energy as a function of the reaction coordinate (rc) is the key quantity for the computation of equilibrium and kinetic quantities. When it is considered as the potential of mean force, the problem is the calculation of the mean force for given values of the rc. We reinvestigate the PMCF (potential of mean constraint force) method which applies a constraint to the rc to compute the mean force as the mean negative constraint force and a metric tensor correction. The latter allows for the constraint imposed to the rc and possible artefacts due to multiple constraints of other variables which for practical reasons are often used in numerical simulations. Two main results are obtained that are of theoretical and practical interest. First, the correction term is given a very concise and simple shape which facilitates its interpretation and evaluation. Secondly, a theorem describes various rcs and possible combinations with constraints that can be used without introducing any correction to the constraint force. The results facilitate the computation of free energy by molecular dynamics simulations.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号