首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
化学   1篇
  2004年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The calculation of the electrostatic potential resulting from an infinite or extended array of charges in the interior of a region of interest is a frequent task in computational chemistry. In case of a periodic potential this can, for example, be done by Ewald summation or by multipole methods. An important alternative are those methods where arrays of auxiliary point charges are optimized with respect to charge and/or position to reproduce the original electrostatic potential. In the literature different variations are reported. We compare the performance of some of these with respect to their ability to reproduce the original potential and the computational effort required. Between (1) surface charges determined by the conductor‐boundary condition, (2) optimized surface charges, and (3) surface charges floating on the surface we find that (2) offers good quality with small computational costs involved. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号