首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4138篇
  免费   230篇
  国内免费   12篇
化学   3020篇
晶体学   15篇
力学   154篇
数学   529篇
物理学   662篇
  2023年   34篇
  2022年   68篇
  2021年   81篇
  2020年   88篇
  2019年   94篇
  2018年   75篇
  2017年   61篇
  2016年   137篇
  2015年   114篇
  2014年   149篇
  2013年   191篇
  2012年   319篇
  2011年   360篇
  2010年   158篇
  2009年   153篇
  2008年   301篇
  2007年   270篇
  2006年   262篇
  2005年   251篇
  2004年   210篇
  2003年   127篇
  2002年   145篇
  2001年   52篇
  2000年   36篇
  1999年   37篇
  1998年   16篇
  1997年   31篇
  1996年   36篇
  1995年   19篇
  1994年   29篇
  1993年   23篇
  1992年   30篇
  1991年   10篇
  1990年   23篇
  1989年   13篇
  1988年   14篇
  1986年   14篇
  1985年   34篇
  1984年   26篇
  1983年   17篇
  1982年   30篇
  1981年   26篇
  1980年   17篇
  1979年   25篇
  1978年   23篇
  1977年   27篇
  1976年   19篇
  1975年   19篇
  1974年   18篇
  1973年   9篇
排序方式: 共有4380条查询结果,搜索用时 31 毫秒
1.
2.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
3.
Journal of Computer-Aided Molecular Design - Accurate predictions of acid dissociation constants are essential to rational molecular design in the pharmaceutical industry and elsewhere. There has...  相似文献   
4.
Partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions (ps‐PES‐FPES), with ionic exchange capacity (IEC) ranging between 0.9 and 1.5 meq H+/g, are synthesized by regioselective bromination of partially fluorinated poly(arylene ether sulfone) multiblock copolymers (PES‐FPES), followed by Ullman coupling reaction with lithium 1,1,2,2‐tetrafluoro‐2‐(1,1,2,2‐tetrafluoro‐2‐iodoethoxy)ethanesulfonate. The PES‐FPES are prepared by aromatic nucleophilic substitution reaction by an original approach, that is, “one pot two reactions synthesis.” The chemical structures of polymers are analyzed by 1H and 19F NMR spectroscopy. The resulted ionomers present two distinct glass transitions and α relaxations revealing phase separation between the hydrophilic and the hydrophobic domains. The phase separation is observed at much lower block lengths of ps‐PES‐FPES as compared with the literature. AFM and SANS observations supported the phase separation, the hydrophilic domains are well dispersed but the connectivity to each other depends on the ps‐PES block lengths. The thermomechanical behavior, the water up‐take, and the conductivity of the ps‐PES‐FPES membranes are compared with those of Nafion 117® and randomly functionalized polysulfone (ps‐PES). Conductivities close or higher to those of Nafion 117® are obtained. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1941–1956  相似文献   
5.
Thermal decarbonylation of the acyl compounds [Mn(CO)5(CORF)] (RF=CF3, CHF2, CH2CF3, CF2CH3) yielded the corresponding alkyl derivatives [Mn(CO)5(RF)], some of which have not been previously reported. The compounds were fully characterized by analytical and spectroscopic methods and by several single-crystal X-ray diffraction studies. The solution-phase IR characterization in the CO stretching region, with the assistance of DFT calculations, has allowed the assignment of several weak bands to vibrations of the [Mn(12CO)4(eq-13CO)(RF)] and [Mn(12CO)4(ax-13CO)(RF)] isotopomers and a ranking of the RF donor power in the order CF3<CHF2<CH2CF3≈CF2CH3. The homolytic Mn−RF bond cleavage in [Mn(CO)5(RF)] at various temperatures under saturation conditions with trapping of the generated RF radicals by excess tris(trimethylsilyl)silane yielded activation parameters ΔH and ΔS that are believed to represent close estimates of the homolytic bond dissociation thermodynamic parameters. These values are in close agreement with those calculated in a recent DFT study (J. Organomet. Chem. 2018 , 864, 12–18). The ability of these complexes to undergo homolytic Mn−RF bond cleavage was further demonstrated by the observation that [Mn(CO)5(CF3)] (the compound with the strongest Mn−RF bond) initiated the radical polymerization of vinylidene fluoride (CH2=CF2) to produce poly(vinylidene fluoride) in good yields by either thermal (100 °C) or photochemical (UV or visible light) activation.  相似文献   
6.
7.
8.
We give a Gray code and constant average time generating algorithm for derangements, i.e., permutations with no fixed points. In our Gray code, each derangement is transformed into its successor either via one or two transpositions or a rotation of three elements. We generalize these results to permutations with number of fixed points bounded between two constants.  相似文献   
9.
STM, STS, LEED and XPS data for crystalline θ-Al2O3 and non-crystalline Al2O3 ultra-thin films grown on NiAl(0 0 1) at 1025 K and exposed to water vapour at low pressure (1 × 10−7-1 × 10−5 mbar) and room temperature are reported. Water dissociation is observed at low pressure. This reactivity is assigned to the presence of a high density of coordinatively unsaturated cationic sites at the surface of the oxide film. The hydroxyl/hydroxide groups cannot be directly identify by their XPS binding energy, which is interpreted as resulting from the high BE positions of the oxide anions (O1s signal at 532.5-532.8 eV). However the XPS intensities give evidence of an uptake of oxygen accompanied by an increase of the surface coverage by Al3+ cations, and a decrease of the concentration in metallic Al at the alloy interface. A value of ∼2 for the oxygen to aluminium ions surface concentration ratio indicates the formation of an oxy-hydroxide (AlOxOHy with x + y ∼ 2) hydroxylation product. STM and LEED show the amorphisation and roughening of the oxide film. At P(H2O) = 1 × 10−7 mbar, only the surface of the oxide film is modified, with formation of nodules of ∼2 nm lateral size covering homogeneously the surface. STS shows that essentially the valence band is modified with an increase of the density of states at the band edge. With increasing pressure, hydroxylation is amplified, leading to an increased coverage of the alloy by oxy-hydroxide products and to the formation of larger nodules (∼7 nm) of amorphous oxy-hydroxide. Roughening and loss of the nanostructure indicate a propagation of the reaction that modifies the bulk structure of the oxide film. Amorphisation can be reverted to crystallization by annealing under UHV at 1025 K when the surface of the oxide film has been modified, but not when the bulk structure has been modified.  相似文献   
10.
The radiation-induced decomposition of C4F9I and CF3I overlayers at 119 K on diamond (100) surfaces has been shown to be an efficient route to fluorination of the diamond surface. X-ray photoelectron spectroscopy has been used for photoactivation as well as for studying the photodecomposition of the fluoroalkyl iodide molecules, the attachment of the photofragments to the diamond surface, and the thermal decomposition of the fluoroalkyl ligands. Measured chemical shifts agree well with ab initio calculations of both C 1s and F 1s binding energies. It is found that chemisorbed CF3 groups on diamond (100) decompose by 300 K whereas C4F9 groups decompose over the range 300 to 700 K and this reactivity difference is rationalized on steric grounds. Both of these thermal decomposition processes produce surface C---F bonds on the diamond. The surface C---F species thermally decompose over a wide temperature range extending up to 1500 K. Hydrogen passivation of the diamond surface is ineffective in preventing free radical attack from the photodissociated products of the fluoroalkyl iodides; I atoms produced photolytically abstract H from surface C---H bonds to yield hydrogen iodide at 119 K allowing diamond fluorination. The attachment of chemisorbed F species to the diamond (100) surface causes band bending as the surface states are occupied as a result of chemisorption. This results in a shift to higher binding energy of the diamond-related C 1s levels present in the surface and subsurface regions which are sampled by XPS on the diamond. The use of photoactivation of fluoroalkyl iodides for the fluorination of diamond surfaces provides a convenient route compared to other methods involving the action of atomic F, molecular F2, XeF2 and F-containing plasmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号