首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
化学   38篇
物理学   4篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有42条查询结果,搜索用时 78 毫秒
1.
The electrochemical behavior of ferrocene in an aqueous microemulsion (pentan-1-ol/sodium dodecyl sulfate (SDS)/aq. H2SO4) has been studied using an ultramicroelectrode. Contrary to the generally expected reversible peak, the experiments show the presence of a second oxidation peak during the reverse scan at low scan rates where the peak corresponding to ferricinium ion reduction is nearly absent along with the unanticipated appearance of a current dip. These observations are rationalized using a novel type of coupling between heterogeneous (electrochemical) and homogeneous (chemical) electron transfer processes. The composition of the medium, especially the acid concentration, affects the electron transfer of the solubilized probe and there exists a threshold acid concentration for achieving maximum anodic peak current.  相似文献   
2.
In situ-generated silver nanoclusters(Ag(n)) during the reduction of either silver(I) oxide or other salts presumably catalyze the Wolff rearrangement of alpha-diazoketones. Their optical, physical, and catalytic properties depend on the starting silver(I) compound and the reaction conditions. [reaction: see text]  相似文献   
3.
KP Singh 《Pramana》1999,53(6):1043-1051
Clusters of galaxies are excellent probes of cosmic structure and evolution. X-ray studies of clusters provide some of their key parameters, viz., temperature of the hot intra-cluster gas, its metallicity, X-ray luminosity and surface brightness giving mass distribution and mass-flow rate in the case of cooling flows. X-ray measurements for a large sample of clusters have lead to estimates of the total gravitating mass in them, which can be compared to the virial masses derived from dynamical considerations and gravitational lensing in some of them. X-ray derived total masses are consistent with masses obtained from the other methods after the effects due to the presence of cooling flows are taken into account in the analyses. Estimated virial masses, lack of evolution in X-ray properties, and detection of several very hot clusters at high redshifts indicate a Universe with a low value (≤ 0.3) for the Ω parameter.  相似文献   
4.
Although nitrogen doped CNTs (N-CNTs) are considered as a promising alternative to platinized carbon for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs), the origin of the enhanced ORR activity with N-CNTs is not clear at present. Among several plausible reasons, the exposure of edge plane and creation of impurity band/surface states near the Fermi level are considered as major causes behind the catalytic activity. However, CNTs without nitrogen doping are not known to catalyze the ORR. In this work, we study the ORR activity of functionalized carbon nanotubes with different functional groups, such as sulfonic acid and phosphonic acid, in order to understand the role of surface functionalities in catalyzing the reaction. Functionalized CNTs show significantly enhanced activity towards the ORR, while CNTs without such surface functional groups do not reveal any such special ORR activity. Linear sweep voltammetry experiments with different rotation rates show diffusion controlled limiting current values for functionalized CNTs, and the 'n' values derived from Koutecky-Levich plots are 3.3 and 1.7 for S-MWCNTs and P-MWCNTs, respectively. This work demonstrates the ORR activity of functionalized MWCNTs, which opens up new strategies for electrocatalyst design in PEMFCs.  相似文献   
5.
Tin oxide submicronwires doped with Fe element were prepared by the thermal evaporation method. Morphological and structural characterizations revealed wires with sub micron size and crystalline in nature. The field electron emission from the single Fe:SnO2 wire was carried out in conventional field emission microscope. The Fowler–Nordheim plot obtained from IV characteristics of the wire showed a linear behavior typical that of metal. The field enhancement factor estimated from the slope of the F–N plot is 7455 cm?1, indicating that the field emission is from nanometric features of the emitter. A current density of 10 A/cm2 has been obtained at an applied field of 4.845 × 103 V/μm. The field emission current–time record at a current level of 1 μA for more than 3 h duration is promising for various field emissions based applications.  相似文献   
6.
Green luminescent, graphene quantum dots (GQDs) with a uniform size of 3, 5, and 8.2(±0.3)?nm in diameter were prepared electrochemically from MWCNTs in propylene carbonate by using LiClO(4) at 90?°C, whereas similar particles of 23(±2)?nm were obtained at 30?°C under identical conditions. Both these sets of GQDs displayed a remarkable quantum efficiency of 6.3 and 5.1?%, respectively. This method offers a novel strategy to synthesise size-tunable GQDs as evidenced by multiple characterisation techniques like transmission and scanning electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray diffraction (XRD). Photoluminescence of these GQDs can be tailored by size variation through a systematic change in key process parameters, like diameter of carbon nanotube, electric field, concentration of supporting electrolyte and temperature. GQDs are promising candidates for a variety of applications, such as biomarkers, nanoelectronic devices and chemosensors due to their unique features, like high photostability, biocompatibility, nontoxicity and tunable solubility in water.  相似文献   
7.
A monophasic sample of Ag2MnSn3S8 has been prepared by heating stoichiometric amounts of the constituent metals and sulfur in evacuated silica tubes at 670°C. Structural analysis of Ag2MnSn3S8 using Rietveld refinement of powder X-ray diffraction data shows that it crystallizes in the space group with a=10.6984(2) Å. Magnetization measurements in the temperature range 5-300 K indicate paramagnetic behavior with a μeff of 5.80 μB, consistent with the divalent nature of manganese. Electrochemical studies show a coulombic capacity of ∼50 Ah kg−1 for the cell constructed with Ag2MnSn3S8 as the positive electrode.  相似文献   
8.
A comparison of the results of catalytic and electrocatalytic oxidation of aniline using VS-1 in the presence of H2O2 and TBHP indicates remarkable differences in conversion and selectivity. VS-1 catalyzes the oxidation of aniline selectively to nitrobenzene (73%) in the presence oft-butyl hydroperoxide (TBHP), while azoxybenzene (95.2%) is formed selectively when H2O2 is used. Cyclic voltammetric studies show a three-step oxidation of aniline to nitrobenzene in H2O2 but in the presence of TBHP only one step is observed. Electrocatalytic oxidation of aniline to nitrobenzene occurs at a potential 700 mV less than that corresponding to H2O2 as oxidant along with a selectivity of 91.8%. The enhancement of electrocatalytic rate is attributed to the stabilization of electron deficient transition state.  相似文献   
9.
In this work we report the unique electrocatalytic role of benzoic acid protected silver nanoclusters (Ag(n), mean core diameter 2.5 nm) in the Wolff rearrangement (Scheme 1) of alpha-diazoketones. More specifically, the presence of a Ag(n) (0)/Ag(n) (+) redox couple facilitates a nonclassical electron-transfer process, involving chemical reaction(s) interposed between two electron-transfer steps occurring in opposite directions. Consequently, the net electron transfer between the electron mediator (Ag(n)) and alpha-diazoketone is zero. In-situ UV-visible studies using pyridine as a nucleophilic probe indicate the participation of alpha-ketocarbene/ketene as important reaction intermediates. Controlled potential coulometry of alpha-diazoketones using Ag(n) as the anode results in the formation of Wolff rearranged carboxylic acids in excellent yield, without sacrificing the electrocatalyst.  相似文献   
10.
A simple method of vapor deposition for the shape selective synthesis of ZnO structures, namely, multipods, submicron wires, and spheres, has been successfully demonstrated. A plausible growth mechanism based on the studies of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) is proposed. Our studies suggest that the growth of a multipod structure is governed by the screw dislocation propagation while the vapor-liquid-solid (VLS) mechanism is responsible for the formation of submicron wires and spheres. Moreover, the flow rate of the carrier gas plays a crucial role in governing the morphology. Further, these structures exhibit an enhanced field emission behavior. The nonlinearity in the Fowler-Nordheim (F-N) plot, a characteristic feature of electron emission from semiconductors, is explained by considering the contributions from both the conduction and the valence bands of ZnO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号