首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   37篇
化学   382篇
力学   5篇
数学   27篇
物理学   19篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   9篇
  2019年   4篇
  2018年   6篇
  2017年   1篇
  2016年   14篇
  2015年   16篇
  2014年   14篇
  2013年   11篇
  2012年   41篇
  2011年   31篇
  2010年   15篇
  2009年   21篇
  2008年   34篇
  2007年   27篇
  2006年   27篇
  2005年   22篇
  2004年   29篇
  2003年   22篇
  2002年   16篇
  2001年   13篇
  2000年   13篇
  1998年   1篇
  1997年   1篇
  1996年   7篇
  1995年   2篇
  1994年   5篇
  1993年   9篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有433条查询结果,搜索用时 15 毫秒
1.
Eu(Ir1–x Pd x )2Si2 solid solutions which exist only for 0x0.125 and 0.75x1 crystallize in the tetragonal ThCr2Si2-type structure. X-ray diffraction data, magnetic susceptibility and151Eu Mössbauer measurements suggest that these compounds can be characterized as homogeneous mixed valence systems. At room temperature and for 0x0.125, the europium valence decreases asx increases. For 0.75x1, a sharp continuous valence transition from Eu2+ to Eu3+ occurs near 48 K, 54 K and 78 K forx=0.75, 0.81 and 0.94 respectively. These valence changes are discussed in relation with the Eu–(Ir, Pd) interatomic distance.  相似文献   
2.
A novel Cu(II)-Mn(II) hexanuclear complex of formula [[MnCuL](3)(tma)](ClO(4))(3).8H(2)O [H(2)L = macrocyclic Robson proligand; H(3)tma = trimesic acid] has been obtained by connecting three heterobinuclear [Cu(II)Mn(II)L](2+) cationic species through the trimesate anion. The complex exhibits a C(3) rotational symmetry, imposed by the geometry of the bridging ligand. The interaction within each Mn(II)-Cu(II) pair is antiferromagnetic (J = -16.7 cm(-1)). A weak ferromagnetic coupling among the three S = 2 resulting spins through the tricarboxylato bridge leads to a S = 6 ground spin state, for which the spin polarization mechanism is responsible.  相似文献   
3.
The way in which enzymes influence the rate of chemical processes is still a question of debate. The protein promotes the catalysis of biochemical processes by lowering the free energy barrier in comparison with the reference uncatalyzed reaction in solution. In this article we are reporting static and dynamic aspects of the enzyme catalysis in a bimolecular reaction, namely a methyl transfer from S-adenosylmethionine to the hydroxylate oxygen of a substituted catechol catalyzed by catechol O-methyltransferase. From QM/MM optimizations, we will first analyze the participation of the environment on the transition vector. The study of molecular dynamics trajectories will allow us to estimate the transmission coefficient from a previously localized transition state as the maximum in the potential of mean force profile. The analysis of the reactive and nonreactive trajectories in the enzyme environment and in solution will also allow studying the geometrical and electronic changes, with special attention to the chemical system movements and the coupling with the environment. The main result, coming from both analyses, is the approximation of the magnesium cation to the nucleophilic and the hydroxyl group of the catecholate as a result of a general movement of the protein, stabilizing in this way the transition state. Consequently, the free energy barrier of the enzyme reaction is dramatically decreased with respect to the reaction in solution.  相似文献   
4.
Intermolecular proton transfer in solid phase from the hydroxo bridge to a water molecule occurs in a new mu-hydroxo iron(III) compound of formula {EtNH3[Fe2(ox)2Cl2(mu-OH)].2H2O}n leading to a still crystalline compound in which the mu-oxo bridge replaces the mu-hydroxo one. Both three-dimensional compounds exhibit magnetic ordering at Tc ca. 70 K due to a spin canting.  相似文献   
5.
6.
As a model of the chemical reactions that take place in the active site of gluthatione reductase, the nature of the molecular mechanism for the hydride transfer step has been characterized by means of accurate quantum chemical characterizations of transition structures. The calculations have been carried out with analytical gradients at AM1 and PM3 semiempirical procedures, ab initio at HF level with 3-21G, 4-31G, 6-31G, and 6-31G basis sets and BP86 and BLYP as density functional methods. The results of this study suggest that the endo relative orientation on the substrate imposed by the active site is optimal in polarizing the C4-Ht bond and situating the system in the neighborhood of the quadratic region of the transition structure associated to the hydride transfer step on potential energy surface. The endo arrangement of the transition structure results in optimal frontier HOMO orbital interaction between NADH and FAD partners. The geometries of the transition structures and the corresponding transition vectors, that contain the fundamental information relating reactive fluctuation patterns, are model independent and weakly dependent on the level of theory used to determine them. A comparison between simple and complex molecular models shows that there is a minimal set of coordinates describing the essentials of hydride transfer step. The analysis of transition vector components suggests that the primary and secondary kinetic isotope effects can be strongly coupled, and this prompted the calculation of deuterium and tritium primary, secondary, and primary and secondary kinetic isotope effects. The results obtained agree well with experimental data and demonstrate this coupling.  相似文献   
7.
A comparative theoretical study of a bimolecular reaction in aqueous solution and catalyzed by the enzyme catechol O-methyltransferase (COMT) has been carried out by a combination of two hybrid QM/MM techniques: statistical simulation methods and internal energy minimizations. In contrast to previous studies by other workers, we have located and characterized transition structures for the reaction in the enzyme active site, in water and in a vacuum, and our potential of mean force calculations are based upon reaction coordinates obtained from features of the potential energy surfaces in the condensed media, not from the gas phase. The AM1/CHARMM calculated free energy of activation for the reaction of S-adenosyl methionine (SAM) with catecholate catalyzed by COMT is 15 kcal mol(-1) lower the AM1/TIP3P free-energy barrier for the reaction of the trimethylsulfonium cation with the catecholate anion in water at 300 K, in agreement with previous estimates. The thermodynamically preferred form of the reactants in the uncatalyzed model reaction in water is a solvent-separated ion pair (SSIP). Conversion of the SSIP into a contact ion pair, with a structure resembling that of the Michaelis complex (MC) for the reaction in the COMT active site, is unfavorable by 7 kcal mol(-1), largely due to reorganization of the solvent. We have considered alternative ways to estimate the so-called "cratic" free energy for bringing the reactant species together in the correct orientation for reaction but conclude that direct evaluation of the free energy of association by means of molecular dynamics simulation with a simple standard-state correction is probably the best approach. The latter correction allows for the fact that the size of the unit cell employed with the periodic boundary simulations does not correspond to the standard state concentration of 1 M. Consideration of MC-like species allows a helpful decomposition of the catalytic effect into preorganization and reorganization phases. In the preorganization phase, the substrates are brought together into the MC-like species, either in water or in the enzyme active site. In the reorganization phase, the roles of the enzymic and aqueous environments may be compared directly because reorganization of the substrate is about the same in both cases. Analysis of the electric field along the reaction coordinate demonstrates that in water the TS is destabilized with respect to the MC-like species because the polarity of the solute diminishes and consequently the reaction field is also decreased. In the enzyme, the electric field is mainly a permanent field and consequently there is only a small reorganization of the environment. Therefore, destabilization of the TS is lower than in solution, and the activation barrier is smaller.  相似文献   
8.
The preparation and crystal structure determination of the iron(III) compound of formula [(NH(4))(2)[Fe(2)O(ox)(2)Cl(2)].2H(2)O](n) (1) (ox = oxalate dianion) are reported here. Complex 1 crystallizes in the orthorhombic system, space group Fdd2, with a = 14.956(7) A, b = 23.671(9) A, c = 9.026(4) A, and Z = 8. The structure of complex 1 consists of the chiral anionic three-dimensional network [Fe(2)O(ox)(2)Cl(2)](2-) where the iron(III) ions are connected by single oxo and bisbidentate oxalato groups. The metal-metal separations through these bridging ligands are 3.384(2) and 5.496(2) A, respectively. Ammonium cations and crystallization water molecules are located in the helical pseudohexagonal tunnels defined by iron atoms. The longest iron-iron distance in the pseudohexagonal tunnel is 15.778(2) A whereas the shortest one is 8.734(2) A. The iron atoms are hexacoordinated: a terminal chloro ligand and five oxygen atoms, that of the oxo group and four from two cis coordinated oxalate ligands, build a distorted octahedral environment around the metal atom. The Fe-O(oxo) bond distance [1.825(2) A] is significantly shorter than the Fe(III)-O(ox) [average value 2.103(4) A] and Fe(III)-Cl bond distances [2.314(2) A]. Magnetic susceptibility measurements of 1 in the temperature range 2.0-300 K reveal the occurrence of a susceptibility maximum at 195 K and a transition toward a magnetically ordered state in the lower temperature region with T(c) = 40 K. The strong antiferromagnetic coupling through the oxo bridge (J = -46.4 cm(-1), the Hamiltonian being H = -JS(A).S(B)) accounts for the susceptibility maximum whereas a weak spin canting of approximately 0.3 degrees due to the antisymmetric magnetic exchange within the chiral three-dimensional network is responsible for the magnetic ordering. The values of coercive field (H(c)) and remnant magnetization (M(r)) obtained from the hysteresis loop of 1 at 5 K are 4000 G and 0.016 micro(B).  相似文献   
9.
Two polymorphic cyano-bridged Au(I)-Ni(II) bimetallic complexes of formulas [Ni(en)2Au(CN)2][Au(CN)2] (1) and [Ni(en)2[Au(CN)2]2] (2) have been prepared from the 1:2 reaction between [Au(CN)2]- and either [Ni(en)2Cl2]Cl or [Ni(en)3]Cl2.2H2O, respectively. The structure of 1 consists of polymeric cationic chains of alternating [Au(CN)2]- and [Ni(en)2]2+ units running along the a axis and [Au(CN)2]- anions lying between the chains. The noncoordinated dicyanoaurate anions are aligned perpendicular to the ac plane and involved in aurophilic interactions with the bridging dicyanoaurate groups, ultimately leading to a 2D bimetallic grid. The structure of 2 consists of trinuclear molecules made of two [Au(CN)2]- anions linked to [Ni(en)2]2+ unit in trans configuration. Trinuclear units are joined by aurophilic interactions to form 1D zigzag chains. The magnetic properties of these compounds are strongly dominated by the local anisotropy of the octahedral Ni(II) ions, thus indicating that the magnetic exchange interaction mediated by dicyanoaurate bridging groups, if it exists, is very weak. To get insight into the electronic properties of the inter- and intramolecular interactions of the [Au(CN)2]- building blocks, the structures of different aggregates of dicyanogold units were optimized and then analyzed by making use of atoms-in-molecules (AIM) theory. Moreover, bond indices were calculated by methods based upon nonlinear population analysis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号