首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   12篇
化学   175篇
晶体学   2篇
力学   2篇
数学   5篇
物理学   6篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   4篇
  2013年   14篇
  2012年   11篇
  2011年   21篇
  2010年   5篇
  2009年   5篇
  2008年   15篇
  2007年   16篇
  2006年   14篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   12篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
1.
Mexiletine— and lysine hydrochloride—o-phthalaldehyde and mexiletine hydrochloride—, cysteine—, cysteamine—, homocysteine— and lysine hydrochloride—fluorescamine derivatives were subjected to Triton and β-cyclodextrin enhancement treatments. Of several classical fluorescence-enhancing reagents tested (Triton, β-cyclodextrin, sodium dodecyl sulphate, Brij), Triton provided the best results, followed by β-cyclodextrin. Increases in fluorescence emission by a factor of up to about 10 (mexiletine—fluorescamine—Triton X-100) were observed, with a generally negligible influence of the enhancing reagents on the excitation and emission maxima. Fluorescence enhancement by the addition of a suitable reagent solution to the final analyte solution may, in specific instances, enhance the detectability of native or chemically induced fluorophores.  相似文献   
2.
Rate coefficients for the gas-phase thermal decomposition of HO(2)NO(2) (peroxynitric acid, PNA) are reported at temperatures between 331 and 350 K at total pressures of 25 and 50 Torr of N(2). Rate coefficients were determined by measuring the steady-state OH concentration in a mixture of known concentrations of HO(2)NO(2) and NO. The measured thermal decomposition rate coefficients k(-)(1)(T,P) are used in combination with previously published rate coefficient data for the HO(2)NO(2) formation reaction to yield a standard enthalpy for reaction 1 of Delta(r)H degrees (298K) = -24.0 +/- 0.5 kcal mol(-1) (uncertainties are 2sigma values and include estimated systematic errors). A HO(2)NO(2) standard heat of formation, Delta(f)H degrees (298K)(HO(2)NO(2)), of -12.6 +/- 1.0 kcal mol(-1) was calculated from this value. Some of the previously reported data on the thermal decomposition of HO(2)NO(2) have been reanalyzed and shown to be in good agreement with our reported value.  相似文献   
3.
1‐[(1R)‐(1‐Phenylethyl)]‐1‐azoniabicyclo[3.1.0]hexane tosylate was generated as a stable bicyclic aziridinium salt from the corresponding 2‐(3‐hydroxypropyl)aziridine upon reaction with p‐toluenesulfonyl anhydride. This bicyclic aziridinium ion was then treated with various nucleophiles including halides, azide, acetate, and cyanide in CH3CN to afford either piperidines or pyrrolidines through regio‐ and stereoselective ring opening, mediated by the characteristics of the applied nucleophile. On the basis of DFT calculations, ring‐opening reactions under thermodynamic control yield piperidines, whereas reactions under kinetic control can yield both piperidines and pyrrolidines depending on the activation energies for both pathways.  相似文献   
4.
5.
The synthesis of titanium–carboxylate metal–organic frameworks (MOFs) is hampered by the high reactivity of the commonly employed alkoxide precursors. Herein, we present an innovative approach to titanium‐based MOFs by the use of titanocene dichloride to synthesize COK‐69, the first breathing Ti MOF, which is built up from trans‐1,4‐cyclohexanedicarboxylate linkers and an unprecedented [TiIV33‐O)(O)2(COO)6] cluster. The photoactive properties of COK‐69 were investigated in depth by proton‐coupled electron‐transfer experiments, which revealed that up to one TiIV center per cluster can be photoreduced to TiIII while preserving the structural integrity of the framework. The electronic structure of COK‐69 was determined by molecular modeling, and a band gap of 3.77 eV was found.  相似文献   
6.
7.
Electron paramagnetic resonance (EPR) spectroscopy was successfully used for the first time to follow the Bergman cyclization of bis-ortho-diynyl arene (BODA) compounds. Five BODA monomers with different spacer (X) and terminal groups (R) were compared. In situ polymerization via EPR spectroscopy yielded first-order rate expressions. Monomers with spacer -O- or -C(CF(3))(2) and terminal group R = Ph exhibited similar kinetic behavior upon thermal polymerization, whereas monomers with pyridine and thiophene terminal groups gave significantly higher rates of polymerization over phenyl-terminated derivatives. A model compound, 1,2-bis(phenylethynyl)benzene, was used to probe the polymerization mechanism, and radical intermediates were found to be stable indefinitely at room temperature.  相似文献   
8.
The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol‐to‐olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H‐SAPO‐34 and H‐SSZ‐13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol‐treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time‐dependent density functional theory (TDDFT) calculations. Static gas‐phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.  相似文献   
9.
Despite various studies on the polymerization of poly(p‐phenylene vinylene) (PPV) through different precursor routes, detailed mechanistic knowledge on the individual reaction steps and intermediates is still incomplete. The present study aims to gain more insight into the radical polymerization of PPV through the Gilch route. The initial steps of the polymerization involve the formation of a p‐quinodimethane intermediate, which spontaneously self‐initiates through a dimerization process leading to the formation of diradical species; chain propagation ensues on both sides of the diradical or chain termination occurs by the formation of side products, such as [2.2]paracyclophanes. Furthermore, different p‐quinodimethane systems were assessed with respect to the size of their aromatic core as well as the presence of heteroatoms in/on the conjugated system. The nature of the aromatic core and the specific substituents alter the electronic structure of the p‐quinodimethane monomers, affecting the mechanism of polymerization. The diradical character of the monomers has been investigated with several advanced methodologies, such as spin‐projected UHF, CASSCF, CASPT2, and DMRG calculations. It was shown that larger aromatic cores led to a higher diradical character in the monomers, which in turn is proposed to cause rapid initiation.  相似文献   
10.
Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multitechnique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9 ± 0.2 nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO(2) layer that was at least 10 nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross-linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules was successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS-modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated that an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号