首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
化学   18篇
物理学   12篇
  2022年   3篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  1999年   3篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
2.
3.
Two new peroxosolvates of drug-like compounds were synthesized and studied by a combination of X-ray crystallographic, Raman spectroscopic methods, and periodic DFT computations. The enthalpies of H-bonds formed by hydrogen peroxide (H2O2) as a donor and an acceptor of protons were compared with the enthalpies of analogous H-bonds formed by water (H2O) in isomorphic (isostructural) hydrates. The enthalpies of H-bonds formed by H2O2 as a proton donor turned out to be higher than the values of the corresponding H-bonds formed by H2O. In the case of H2O2 as a proton acceptor in H-bonds, the ratio appeared reversed. The neutral O∙∙∙H-O/O∙∙∙H-N bonds formed by the lone electron pair of the oxygen atom of water were the strongest H-bonds in the considered crystals. In the paper, it was found out that the low-frequency Raman spectra of isomorphous crystalline hydrate and peroxosolvate of N-(5-Nitro-2-furfurylidene)-1-aminohydantoin are similar. As for the isostructural hydrate and peroxosolvate of the salt of protonated 2-amino-nicotinic acid and maleic acid monoanion, the Raman spectra are different.  相似文献   
4.
The crystal structure of NH(4)(+)OOH(-) is determined from single-crystal x-ray data obtained at 150 K. The crystal belongs to the space group P2(1)/c and has four molecules in a unit cell. The structure consists of discrete NH(4)(+) and OOH(-) ions. The OOH(-) ions are linked by short hydrogen bonds (2.533 A?) to form parallel infinite chains. The ammonium ions form links between these chains (the N?O distances vary from 2.714 to 2.855 A?) giving a three-dimensional network. The harmonic IR spectrum and H-bond energies are computed at the Perdew-Burke-Ernzerhof (PBE)/6-31G(??) level with periodic boundary conditions. A detailed analysis of the shared (bridging) protons' dynamics is obtained from the CPMD simulations at different temperatures. PBE functional with plane-wave basis set (110 Ry) is used. At 10 K the shared proton sits near the oxygen atom, only a few proton jumps along the chain are detected at 70 K while at 270 K numerous proton jumps exist in the trajectory. The local-minimum structure of the space group Cc is localized. It appears as a result of proton transfer along a chain. This process is endothermic (~2?kJ/mol) and is described as P2(1)/c?2Cc. The computed IR spectrum at 10 K is close to the harmonic one, the numerous bands appear at 70 K while at 270 K it shows a very broad absorption band that covers frequencies from about 1000 to 3000?cm(-1). The advantages of the NH(4)(+)OOH(-) crystal as a promising model for the experimental and DFT based molecular dynamics simulation studies of proton transfer along the chain are discussed.  相似文献   
5.
The characteristics of the critical electron density points of the O-H···A fragment (A = O or N) in molecular crystals with short H bonds were analyzed in terms of the Bader quantum-topological theory of molecular structure. The wave functions (B3LYP/6-31G** approximation) of the ground state of 26 three-dimensional periodic crystals with experimentally determined structures were used. Intermediate-type interactions separating the limiting cases of covalent and closed shell-type interactions were found to be characterized by the following geometric parameters: 2.45 Å ≤ D(O···O) ≤ 2.6 Å, 1.35 Å ≤ d(H···O) ≤ 1.65 Å, and 1.0 Å ≤ d(O-H) ≤ 1.10 Å. Such interactions are observed in molecular crystals with the O-H···A fragment and high bridge proton mobility. Differences between H···O and H···N interactions were quantitatively characterized by the dependence of ρ b on d(H···A), where A = O or N. The dependence parameter values were shown to be determined by the nature of the A atom that forms the H bond. The influence of the crystalline environment on systems with strong H bonds manifested itself by changes in the position of the bridge proton. The d(O-H)/d(H···O) ratio was, however, the same for gas-phase complexes and molecular crystals with weakly bent O-H···O fragments (∠O-H···O > 160°).  相似文献   
6.
In this article we compare the classical monopole mass filter of von Zahn and the monopole mass filter with a hyperbolic V-shaped electrode. The experimental results and those of computer simulation for both mass spectrometers are presented. We show that the replacement of a conventional 90 degrees V-shaped electrode by an electrode with a hyperbolic profile substantially improves the peak shape of any given mass, and increases the mass resolution by a factor of 3-4 and the abundance sensitivity by a factor of 100. The potential of high analytical performance combined with electroforming techniques for electrode manufacture indicate future practical uses of such instruments. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
7.
The infrared (IR) spectra of water–ethanol (EtOH) solutions of HCl are measured over a wide range of acid concentration at fixed H2O―EtOH ratios (1 : 1, 1 : 2, and 1 : 40). In these systems, different proton disolvates with (quasi)symmetrical H‐bonds are formed. Their structure and vibrational features are revealed by the density functional theory method coupled with the polarizable continuum model of solvation. In dilute acidic solutions, the Zundel‐type H5O2+ ion is mainly formed. In concentrated HCl solutions, the ions (H2O···H···O(H)Et)+ and (Et(H)O···H···O(H)Et)+ with the quasi‐symmetrical O···H+···O unit having O···O separation <2.45 Å appear. The first ion characterized by the IR‐intensive band around 1800 cm?1 is mainly formed in the 1 : 1 water–ethanol systems. The second ion exists in the 1 : 2 and 1 : 40 water–ethanol systems. Its spectroscopic signatures are the groups of the IR‐intensive bands around 800 and 1050 cm?1. In highly concentrated HCl solutions with the 1 : 40 water–ethanol ratio, a neutral Et(H)O···H+···Cl? complex exists. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
9.
Outersphere reorganization energies (lambda) for intramolecular electron and hole transfer are studied in anion- and cation-radical forms of complex organic substrates (p-phenylphenyl-spacer-naphthyl) in polar (water, 1,2-dichloroethane, tetrahydrofuran) and quadrupolar (supercritical CO2) solvents. Structure and charge distributions of solute molecules are obtained at the HF/6-31G(d,p) level. Standard Lennard-Jones parameters for solutes and the nonpolarizable simple site-based models of solvents are used in molecular dynamics (MD) simulations. Calculation of lambda is done by means of the original procedure, which treats electrostatic polarization of a solvent in terms of a usual nonpolarizable MD scheme supplemented by scaling of reorganization energies at the final stage. This approach provides a physically relevant background for separating inertial and inertialless polarization responses by means of a single parameter epsilon(infinity), optical dielectric permittivity of the solvent. Absolute lambda values for hole transfer in 1,2-dichloroethane agree with results of previous computations in terms of the different technique (MD/FRCM, Leontyev, I. V.; et al. Chem. Phys. 2005, 319, 4). Computed lambda values for electron transfer in tetrahydrofuran are larger than the experimental values by ca. 2.5 kcal/mol; for the case of hole transfer in 1,2-dichloroethane the discrepancy is of similar magnitude provided the experimental data are properly corrected. The MD approach gives nonzero lambda values for charge-transfer reaction in supercritical CO2, being able to provide a uniform treatment of nonequilibrium solvation phenomena in both quadrupolar and polar solvents.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号