首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   2篇
物理学   3篇
  2020年   1篇
  2019年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
We report the results of an investigation of Fe-doped nanocrystalline ZnO particles synthesized using the co-precipitation method with doping concentrations from 5 up to 31 at%. To understand how the dopant influenced the structural, magnetic and optical properties of nanocrystalline ZnO particles, X-ray diffraction, energy dispersive X-ray spectroscopy, infrared absorption spectroscopy, UV-vis spectroscopy, electron spin resonance spectroscopy (ESR) and vibrating sample magnetometer were employed. From the analysis of X-ray diffraction, our Fe-doped nanocrystalline ZnO particles are identified as having the wurtzite crystal structure and the unit cell volume increases with increasing doping concentrations. However, impurity phases are observed for Fe contents higher than 21 at%. Sample structures were further studied by infrared spectra, from which a broad and strong absorption band in the range of 400-700 cm−1 and -OH stretching vibrational mode at approximately 3400 cm−1 were observed. Ultraviolet-visible measurements showed a decrease in the energy gap with increasing Fe content, probably due to an increase in the lattice parameters. Magnetic measurements showed a ferromagnetic behavior for all samples. ESR results indicate the presence of Fe in both valence states Fe2+ and Fe3+.  相似文献   
2.
Research on Chemical Intermediates - The platinum derivative cisplatin is widely used against many types of cancers effectively. However, cisplatin has limitations such as toxicity, resistances,...  相似文献   
3.
A series of phosphorous-doped hydrogenated amorphous silicon films (a-Si:H) were crystallized using step-by-step laser crystallization process. The structural changes during the sequential crystallization process were detected by Raman measurements. The dehydrogenation was monitored by measuring the Si-H local vibrational modes using Raman spectroscopy and hydrogen effusion measurements. Interestingly, hydrogen bonding is affected by doping of the amorphous material. The influence of doping concentrations, thus the Fermi energy on electronic properties has been investigated employing secondary ion mass spectroscopy (SIMS), dark-conductivity- and Hall-effect measurements. The results from hydrogen effusion are consistent with the results obtained from Raman spectroscopy, Hall-effect- and dark-conductivity measurements.  相似文献   
4.
This study aimed to synthesize a composite material consisting of metal–organic framework based magnesium(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) and its modification using graphene oxide (GO) and Fe3O4. The obtained material (i.e., [Mg3(BTC)2]/GO/Fe3O4) was studied as a matrix for the slow release of ibuprofen. [Mg3(BTC)2]/GO/Fe3O4 matrices were synthesized ex situ with the sonochemical method (material 1) and in situ with the solvothermal method (material 2). The obtained materials were completely characterized by X-ray diffraction and Fourier-transform infrared spectroscopy. Based on scanning electron microscopy imaging, the produced materials were spherical. The presence of GO and Fe3O4 in material 1 and material 2 reduced the surface area, but it increased the adsorption capacity of ibuprofen up to 94.12%. The magnetic properties of materials 1 and 2 were observed using a vibrating sample magnetometer. These results demonstrate that modification of Fe3O4 nanoparticles induces paramagnetic properties in both materials. The presence of this matrix material was able to release ibuprofen up to seven times slower at pH 5.0 and 12 times slower at pH 7.4. An increase in the pH lead to an increase in the concentration of ibuprofen released to 33.31% more than at pH 5.0.  相似文献   
5.
The void formation in Si-rich a-SiC:H films deposited with dc magnetron sputtering is studied by effusion measurements of hydrogen and of implanted rare gases and secondary ion mass spectrometry (SIMS). Rare gas atoms were incorporated into the material by ion implantation. The results suggest a widening of the network openings with increasing alloy concentration. However, the void formation is mainly attributed not to an increase in carbon concentration but to an increase in hydrogen incorporation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号