首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2014年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The main aim of this study was to develop an improved method for the preparation of a bismaleimide–diamine (BMI/DDM) polymer matrix, achieving shorter curing time, longer processing time (pot life), and good thermal mechanical properties. A matrix of BMI/DDM thermoset was prepared at optimal conditions and formulation, containing BMI and DDM in a 2:1 mol ratio with 0.1 wt% of dicumyl peroxide (DCP) as the curing accelerator. An optimal temperature of 150°C was selected for both melt‐mixing and curing processes. The mechanism of matrix preparation was also investigated using differential scanning calorimetry and quantitative Fourier transformed infrared analysis. DCP at the optimal concentration was found to accelerate cross‐linking reactions between BMI and DDM without inhibiting the chain‐extension reaction of BMI. The specified formulation exhibited longer gel time (208 s/g) and shorter post‐curing time (2 h) compared to other formulations. In addition, thermomechanical behavior and thermal stability were analyzed by dynamic mechanical analysis and thermomechanical analysis, and thermogravimetric analysis, respectively. The storage modulus (E′), glass transition temperature (Tg), and decomposition temperature (Td) of the BMI/DDM thermosets increased with the BMI content of the formulations, while the coefficient of thermal expansion and damping behavior (tan δ) decreased in a similar manner, primarily because of an increase in the degree of cross‐linking. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
2.
Grafting of free maleimide and epoxide pendant groups onto the surface of approximately 7-nm silica nanoparticles was investigated. Glycidyloxypropyl groups (3-glycidyloxypropyltrimethoxysilane and 3-aminopropyltrimethoxysilane) that carried epoxide groups and aminopropyl groups were grafted to the silica surface with the help of condensation reactions. Maleimide groups [1,1(')-(methylenedi-4,1-phenelene) bismaleimide] were introduced to the silica surface via nucleophilic addition reaction with the aminopropyl groups pre-grafted onto the surface. The grafted silica samples were characterized using CHN, FTIR, DSC, TGA-FTIR, and 13C and 29Si CP/MAS NMR spectroscopy. NMR analyses revealed that all the functional groups were covalently bonded to the silica surface and most of the maleimide and epoxide rings remained intact on surface. DSC analysis showed that the epoxide groups were more reactive than the maleimide groups.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号