首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   21篇
物理学   1篇
  2022年   3篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  1995年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
This study evaluated the in vitro antineoplastic and antiviral potential and in vivo toxicity of twelve extracts with different polarity obtained from the herbaceous perennial plant Geum urbanum L. (Rosaceae). In vitro cytotoxicity was determined by ISO 10993-5/2009 on bladder cancer, (T-24 and BC-3C), liver carcinoma (HEP-G2) and normal embryonic kidney (HEK-293) cell lines. The antineoplastic activity was elucidated through assays of cell clonogenicity, apoptosis induction, nuclear factor kappa B p65 (NFκB p65) activation and total glutathione levels. Neutral red uptake study was applied for antiviral activity. The most promising G. urbanum extract was analyzed by UHPLC–HRMS. The acute in vivo toxicity analysis was carried out following OEDC 423. The ethyl acetate extract of aerial parts (EtOAc-AP) exhibited the strongest antineoplastic activity on bladder cancer cell lines (IC50 = 21.33–25.28 µg/mL) by inducing apoptosis and inhibiting NFκB p65 and cell clonogenicity. EtOAc and n-butanol extracts showed moderate antiviral activity against human adenovirus type 5 and human simplex virus type I. Seventy four secondary metabolites (gallic and ellagic acid derivatives, phenolic acids, flavonoids, etc.) were identified in EtOAc-AP by UHPLC–HRMS. This extract induced no signs of acute toxicity in liver and kidney specimens of H-albino mice in doses up to 210 mg/kg. In conclusion, our study contributes substantially to the detailed pharmacological characterization of G. urbanum, thus helping the development of health-promoting phytopreparations.  相似文献   
2.
Chemical ionization mass spectrometry of 34 flavones, isoflavones, flavanones, chalcones and aurones with aliphatic amines and ammonia as reactant gases have been investigated. Some unusual ions have been obtained and are discussed. This method can be used to determine the type of flavonoid and the location of some functional groups in the molecule.  相似文献   
3.

Background  

Propolis is widely used in apitherapy, preparations, and food and beverage additives. Various extraction techniques were applied in the extraction of the biologically active constituents of poplar type propolis in order to compare their efficiency. The methods employed were: traditional maceration extraction, ultrasound extraction (UE), and microwave assisted extraction (MAE).  相似文献   
4.

Background  

Propolis (bee glue) has been used as a remedy since ancient times. Propolis from unexplored regions attracts the attention of scientists in the search for new bioactive molecules.  相似文献   
5.
The chemical composition and antimicrobial activity of propolis from a semi-arid region of Morocco were investigated. Fifteen compounds, including triterpenoids (1, 2, 7–12), macrocyclic diterpenes of ingol type (3–6) and aromatic derivatives (13–15), were isolated by various chromatographic methods. Their structures were elucidated by a combination of spectroscopic and chiroptical methods. Compounds 1 and 3 are new natural compounds, and 2, 4–6, and 9–11 are newly isolated from propolis. Moreover, the full nuclear magnetic resonance (NMR) assignments of three of the known compounds (2, 4 and 5) were reported for the first time. Most of the compounds tested, especially the diterpenes 3, 4, and 6, exhibited very good activity against different strains of bacteria and fungi. Compound 3 showed the strongest activity with minimum inhibitory concentrations (MICs) in the range of 4–64 µg/mL. The combination of isolated triterpenoids and ingol diterpenes was found to be characteristic for Euphorbia spp., and Euphorbia officinarum subsp. echinus could be suggested as a probable and new plant source of propolis.  相似文献   
6.
The present study aimed to analyze and compare the chemical profile and antioxidant capacity of propolis from different bee species and different regions. The chemical profiles of propolis from six stingless bee species (Tetragonula iridipennis, T. laeviceps, Lepidotrigona terminata, L. ventralis, Lisotrigona carpenteri and Homotrigona apicalis) collected from a total of eight locations in Vietnam were investigated by gas chromatography–mass spectrometry (GC-MS). More than 70 compounds were identified, amongst which phenolic lipids (cardanols, resorcinols and anacardic acids), aromatic acids, triterpenes and xanthones. Taxonomic markers for Mangifera indica (phenolic lipids and cycloartane triterpenes) were detected in propolis from bees of the genera Tetragonula and Lepidotrigona, although in different amounts, whereas propolis from H. apicalis was characterized by triterpenes of the amyrine type, typical of dipterocarp trees. A clear discrimination between both groups was observed by principal component analysis (PCA) and partial least squares–discriminant analysis (PLS-DA). Propolis from Tetragonula and Lepidotrigona spp. and from Lisotrigona carpenteri, which is rich in xanthones, possesses higher radical scavenging and ferric-reducing capacity than that from H. apicalis. Propolis produced by all six stingless bee species in Vietnam was analyzed for the first time. In addition, this is the first report on L. carpenteri propolis.  相似文献   
7.
Propolis is a honeybee product that has been used since ancient times because of its therapeutic effects. It can be used in the development of alternative therapies for the treatment of many diseases, and because propolis shows antibacterial action, this work was carried out in order to investigate a possible synergism between propolis and antibiotics acting on DNA (ciprofloxacin and norfloxacin) and on the metabolism (cotrimoxazole) against Salmonella typhi. Propolis samples collected in Brazil and Bulgaria were compared in these assays, and the synergism was investigated by using ? and ? of the minimal inhibitory concentration for propolis and antibiotics, evaluating the number of viable cells according to the incubation time. Brazilian and Bulgarian propolis showed antibacterial activity, but no synergistic effects with the three tested antibiotics were seen. Previous works by our laboratory have revealed that propolis has synergistic effects with antibiotics, acting on the bacterial wall and ribosome, but it does not seem to interact with antibiotics acting on DNA or folic acid, and only a bacteriostatic action was seen in these assay conditions.  相似文献   
8.
The chemical composition of propolis from two regions in Canada was studied: Boreal forest and the Pacific coastal forest that lie outside the area of distribution of Aigeiros poplars, the usual propolis source plants. In the sample from Victoria, p-hydroxyacetophenone, benzyl hydroxybenzoate and cinnamic acid were the major components, accompanied by significant amounts of dihydrochalcones, which allowed the identification of its plant source: Populus trichocarpa of section Tacamahaca. Three dihydrochalcones were new for propolis. The sample from Richmond was characterized by large amounts of p-coumaric and cinnamic acid, typical for poplars of section Leuce, subsection Trepidae, its plant source was identified as P. tremuloides. Both samples showed a good radical scavenging activity against DPPH. Obviously, the Northern type propolis is a promising potential source of biologically active substances and deserves further investigation.  相似文献   
9.
Crude ethanolic extracts of propolis, a natural resin, have been directly analysed using electrospray ionization mass (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) in the negative ion mode. European, North American and African samples have been analyzed, but emphasis has been given to Brazilian propolis which displays diverse and region-dependent chemical composition. ESI-MS provides characteristic fingerprint mass spectra, with propolis samples being divided into well-defined groups directly related to their geographical origins. Chemometric multivariate analysis statistically demonstrates the reliability of the ESI-MS fingerprinting method for propolis. On-line ESI-MS/MS tandem mass spectrometry of characteristic [M - H](-) ion markers provides an additional dimension of fingerprinting selectivity, while structurally characterizing the ESI-MS marker components of propolis. By comparison with standards, eight such markers have been identified: para-coumaric acid, 3-methoxy-4-hydroxycinnamaldehyde, 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran, 3-prenyl-4-hydroxycinnamic acid, chrysin, pinocembrin, 3,5-diprenyl-4-hydroxycinnamic acid and dicaffeoylquinic acid. The negative mode ESI-MS fingerprinting method is capable of discerning distinct composition patterns to typify, to screen the sample origin and to reveal characteristic details of the more polar and acidic chemical components of propolis samples from different regions of the world.  相似文献   
10.

Background  

Mushrooms in the genus Agaricus have worldwide distribution and include the economically important species A. bisporus. Some Agaricus species are inedible, including A. placomyces and A. pseudopratensis, which are similar in appearance to certain edible species, yet are known to possess unpleasant odours and induce gastrointestinal problems if consumed. We have studied the chemical composition of these mushrooms using GC-MS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号