首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   9篇
物理学   1篇
  2022年   2篇
  2020年   1篇
  2016年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
Silva CR  Barros VA  Basso LC  Zagatto EA 《Talanta》2011,85(3):1703-1705
A spectrophotometric flow injection procedure involving N,N-dimethyl-p-phenylenediamine (DMPD) is applied to the sulfide monitoring of a sugar fermentation by Saccharomyces cerevisiae under laboratory conditions. The gaseous chemical species evolving from the fermentative process, mainly CO2, are trapped allowing a cleaned sample aliquot to be collected and introduced into the flow injection analyzer. Measurement rate, signal repeatability, detection limit and reagent consumption per measurement were estimated as 150 h−1, 0.36% (n = 20), 0.014 mg L−1 S and 120 μg DMPD, respectively. The main characteristics of the monitoring record are discussed. The strategy is worthwhile for selecting yeast strain, increasing the industrial ethanol production and improving the quality of wines.  相似文献   
3.
The solvatochromic shifts of the n-pi(*) and pi-pi(*) states of uracil in water are analyzed using a combined and sequential Monte Carlo/quantum mechanics (MC/QM) approach. The role of the solute polarization and electronic delocalization into the solvent region are investigated. Electronic polarization of the solute is obtained using the HF/6-31G(d), the polarizable continuum model (PCM) and an iterative procedure using MP2/aug-cc-pVDZ in the MC/QM. The in-water dipole moment of uracil is obtained, respectively, as 5.12 D, 6.12 D and 7.01 +/- 0.05 D. This latter result, corresponding to an increase of 60% with respect to the gas phase value, is used in the classical potential of the MC simulation to obtain statistically uncorrelated configurations for subsequent QM calculations of the ultraviolet-visible absorption spectrum of uracil in water. QM calculations are performed at the time-dependent density-functional theory (TD-DFT) combined with the B3LYP and B3PW91 functionals, multiconfigurational (CASSCF) and the semi-empirical all-valence electron INDO/CIS methods. Using 60 solute-solvent configurations with the explicit inclusion of 200 water molecules the solvatochromic shift is obtained as a blue shift of 0.50 eV for the n-pi(*) state and a red shift of 0.19 eV for the pi-pi(*) state, in good agreement with experimentally-inferred values. These results are compared with TD-DFT results in conjunction with PCM approaches and the importance of solute polarization and wave function delocalization over the solvent region is discussed. Our results suggest that the elusive n-pi(*) state of uracil in water lies around 255 nm hidden by the intense and broad pi-pi(*) transition with a maximum at 260 nm, inverting the relative locations of these states compared to the gas phase. This is further supported by considering the in-water dipole moment changes upon excitation, as obtained from CASSCF calculations.  相似文献   
4.
The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO2 thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier–Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.  相似文献   
5.
6.
The determination and identification of mycosporine-like amino acids (MAAs) from algae remain a major challenge due to the low concentration. Mass spectrometry (MS) can make an invaluable contribution in the search and identification of MAAs because of its high sensitivity, possibility of coupling with liquid chromatography, and the availability of powerful tandem mass spectrometric techniques. However, the unequivocal determination of the presence and location of important functional groups present on the basic skeleton of the MAAs is often elusive due to their inherent instability under MS conditions. In this study, the use of hydrogen/deuterium (H/D) exchange and electrospray ionisation tandem mass spectrometry (ESI-MS/MS) for characterisation of four MAAs (palythine, asterina, palythinol and shinorine) isolated from the macroalgae Gracilaria tenuistipitata Chang et Xia was investigated. The accurate-mass confirmation of the protonated molecules was performed on a Q-TOF instrument. We demonstrate that employing deuterium labelling in ESI-MS/MS analysis provides a convenient tool for the determination of new MAAs. Although the fragmentation patterns of MAAs were discussed earlier, to our knowledge, this is the first time that mechanisms are proposed.  相似文献   
7.
The main objectives of this study were to develop and characterize hydrophilic polymeric membranes impregnated with poly-lactic acid (PLA) nanoparticles (NPs) combined with red propolis (RP). Ultrasonic-assisted extraction was used to obtain 30% (w/v) red propolis hydroalcoholic extract (RPE). The NPs (75,000 g mol−1) alone and incorporated with RP (NPRP) were obtained using the solvent emulsification and diffusion technique. Biopolymeric hydrogel membranes (MNPRP) were obtained using carboxymethylcellulose (CMC) and NPRP. Their characterization was performed using thermal analysis, Fourier transform infrared (FTIR), total phenols (TPC) and flavonoids contents (TFC), and antioxidant activity through the radical scavenging assay with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric reducing antioxidant power (FRAP). The identification and quantification of significant RP markers were performed through UPLC-DAD. The NPs were evaluated for particle size, polydispersity index, and zeta potential. The TPC for RPE, NPRP, and MNPRP was 240.3 ± 3.4, 191.7 ± 0.3, and 183.4 ± 2.1 mg EGA g−1, while for TFC, the value was 37.8 ± 0.9, 35 ± 3.9, and 26.8 ± 1.9 mg EQ g−1, respectively. Relevant antioxidant activity was also observed by FRAP, with 1400.2 (RPE), 1294.2 (NPRP), and 696.2 µmol Fe2+ g−1 (MNPRP). The primary markers of RP were liquiritigenin, isoliquiritigenin, and formononetin. The particle sizes were 194.1 (NPs) and 361.2 nm (NPRP), with an encapsulation efficiency of 85.4%. Thermal analysis revealed high thermal stability for the PLA, nanoparticles, and membranes. The DSC revealed no interaction between the components. FTIR allowed for characterizing the RPE encapsulation in NPRP and CMC for the MNPRP. The membrane loaded with NPRP, fully characterized, has antioxidant capacity and may have application in the treatment of skin wounds.  相似文献   
8.
The main objectives of this study were to evaluate the chemical constitution and allergenic potential of red propolis extract (RPE). They were evaluated, using high performance liquid chromatography (HPLC) and the release of β-hexosaminidase, respectively. A plethora of biologically active polyphenols and the absence of allergic responses were evinced. RPE inhibited the release of β-hexosaminidase, suggesting that the extract does not stimulate allergic responses. Additionally, the physicochemical properties and antibacterial activity of hydrogel membranes loaded with RPE were analyzed. Bio-polymeric hydrogel membranes (M) were obtained using 5% carboxymethylcellulose (M1 and M2), 1.0% of citric acid (M3) and 10% RPE (for all). Their characterization was performed using thermal analysis, Fourier transform infrared (FTIR), total phenolic content, phenol release test and, antioxidant activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric Reducing Antioxidant Power (FRAP). The latter appointed to the similar antioxidant capacity of the M1, M2 and M3. The degradation profiles showed higher thermostability to M3, followed by M2 and M1. The incorporation of RPE into the matrices and the crosslinking of M3 were evinced by FTIR. There were differences in the release of phenolic compounds, with a higher release related to M1 and lower in the strongly crosslinked M3. The degradation profiles showed higher thermostability to M3, followed by M2 and M1. The antibacterial activity of the membranes was determined using the disc diffusion assay, in comparison with controls, obtained in the same way, without RPE. The membranes elicited antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis, with superior performance over M3. The hydrogel membranes loaded with RPE promote a physical barrier against bacterial skin infections and may be applied in the wound healing process.  相似文献   
9.
Nanofibrillated cellulose (NFC) is a type of nanomaterial based on renewable resources and produced by mechanical disintegration without chemicals. NFC is a potential reinforcing material with a high surface area and high aspect ratio, both of which increase reinforcement on the nanoscale. The raw materials used were unbleached and bleached bamboo organosolv pulp. Organosolv pulping is a cleaner process than other industrial methods (i.e. Kraft process), as it uses organic solvents during cooking and provides easy solvent recovery at the end of the process. The NFC was produced by treating unbleached and bleached bamboo organosolv pulps for 5, 10, 15 and 20 nanofibrillation cycles using the grinding method. Chemical, physical and mechanical tests were performed to determine the optimal condition for nanofibrillation. The delamination of the S2 layer of the fibers during nanofibrillation contributed to the partial removal of amorphous components (mainly lignin), which have low polarity and improved the adhesion of the fibers, particularly the unbleached cellulose. The transverse modulus of elasticity of the unbleached NFC was highest after 10 nanofibrillation cycles. Further treatment cycles decreased the modulus due to the mechanical degradation of the fibers. The unbleached NFC produced by 10 cycles have a greater transverse modulus of elasticity, the crystallite size showed increase with the nanofibrillation, and after 5 nanofibrillation cycles, no differences are observed in the morphology of the fibers.  相似文献   
10.
We introduce two computational models of subdivided populations of asexual organisms which present variability in selection pressure. In both models one can handle the level of environmental correlation among the subpopulations (demes), which is dependent on the length of the shortest path between the demes. This work mainly addresses how environmental heterogeneity can affect the rate at beneficial mutations fixes in a structured population, and the conditions under which clonal interference becomes significant. Although the fixation probability of beneficial mutations is roughly the same as in a panmitic population and so does not depend on the level of correlation among the demes, the simulation results show that fixation rates may be strongly influenced by environmental variability. Based on our simulations we conclude that an increased variability in selection leads to a smaller fixation rate. The effect of environmental heterogeneity on the adaptive process is enhanced as the flow of organisms between subpopulations is reduced. In extreme scenarios, the fixation rate decreases as the rate of beneficial mutations rises.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号