首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
化学   5篇
力学   8篇
数学   4篇
物理学   9篇
  2013年   2篇
  2012年   2篇
  2010年   5篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   3篇
  1986年   1篇
排序方式: 共有26条查询结果,搜索用时 0 毫秒
1.
2.
3.
In this paper we derive an explicit formula for a kinetic relation governing the motion of a phase boundary in a bilinear thermoelastic material capable of undergoing solid-solid phase transitions. To obtain the relation, we study traveling wave solutions of a regularized problem that includes viscosity, heat conduction and convective heat exchange with an ambient medium. Both inertia and latent heat of transformation are taken into account. We investigate the effect of material parameters on the kinetic relation and show that in a certain range of parameters the driving force becomes a non-monotone function of the interface velocity. The model also predicts a nonzero resistance to phase boundary motion, part of which is caused by the thermal trapping. Received: November 15, 2001 / Published online September 4, 2002 RID="*" ID="*" e-mail: annav@math.pitt.edu Communicated by Lev Truskinovsky, Minneapolis  相似文献   
4.
This work is a follow-up on the study [32] of interface dynamics and hysteresis in materials undergoing solid-solid phase transitions. We consider the dynamics of a viscoelastic bar with a nonmonotone stress-strain relation and viscous stress linearly proportional to the strain rate. The bar is placed on an elastic foundation with stiffness β mimicking the interaction of phases in higher dimensions. Time-dependent displacement-controlled loading of the bar results in a tilted and serrated hysteresis loop, in qualitative agreement with some experimental observations in shape-memory alloys. The model exhibits three phase transition processes: phase nucleation, interface slip and phase annihilation. Between these dynamic processes the system gets stuck in local minimizers of the potential energy. As β increases from zero, a slip-dominated solution behavior transforms to the one where slip and annihilation events are preceded by a step-by-step nucleation process. We show that this transition is caused by an interplay between the slip-favoring inertia term and the nucleation-favoring elastic foundation terms. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
A sensitive and specific LC-MS/MS assay for the determination of paclitaxel and its 3'p- and 6-alpha-hydroxy metabolites is presented. A 200 microL plasma aliquot was spiked with a 13C6-labeled paclitaxel internal standard and extracted with 1.0 mL tert-butylmethylether. Dried extracts were reconstituted in 0.1 M ammonium acetate-acetonitrile (1:1, v/v) and 25 microL volumes were injected onto the HPLC system. Separation was performed on a 150 x 2.1 mm C18 column using an alkaline eluent (10 mm ammonium hydroxide-methanol, 30:70, v/v). Detection was performed by positive ion electrospray followed by tandem mass spectrometry. The assay quantifies a range for paclitaxel from 0.25 to 1000 ng/mL and metabolites from 0.25 to 100 ng/mL using 200 microL human plasma samples. Validation results demonstrate that paclitaxel and metabolite concentrations can be accurately and precisely quantified in human plasma. This assay is now used to support clinical pharmacologic studies with paclitaxel.  相似文献   
6.
Summary. We investigate hysteretic behavior in two dynamic models for solid-solid phase transitions. An elastic bar with a nonconvex double-well elastic energy density is subjected to time-dependent displacement boundary conditions. Both models include inertia and a viscous stress term that provides energy dissipation. The first model involves a strain-gradient term that models interfacial energy. In the second model this term is omitted. Numerical simulations combined with analytical results predict hysteretic behavior in the overall end-load versus end-displacement diagram for both models. The hysteresis is largely due to metastability and nucleation; it persists even for very slow loading when viscous dissipation is quite small. In the model with interfacial energy, phase interfaces move smoothly. When this term is omitted, hysteresis is much more pronounced. In addition, phase boundaries move in an irregular, stick-slip fashion. The corresponding load-elongation curve exhibits serrations, in qualitative agreement with certain experimental observations in shape-memory alloys. Received August 4, 1998; revised December 11, 1998  相似文献   
7.
Multiple periodic solutions for a nonlinear suspension bridge equation   总被引:1,自引:0,他引:1  
We investigate nonlinear oscillations in a fourth-order partialdifferential equation which models a suspension bridge. Previouswork establishes multiple periodic solutions when a parameterexceeds a certain eigenvalue. In this paper, we use Leray-Schauderdegree theory to prove that if the parameter is increased further,beyond a second eigenvalue, then additional solutions are created.  相似文献   
8.
We propose a series of quasicontinuum approximations for the simplest lattice model of a fully dynamic martensitic phase transition in one dimension. The approximations are dispersive and include various non-classical corrections to both kinetic and potential energies. We show that the well-posed quasicontinuum theory can be constructed in such a way that the associated closed-form kinetic relation is in an excellent agreement with the predictions of the discrete theory.  相似文献   
9.
Creating chaotic advection is the most efficient strategy to achieve mixing on microscale or in very viscous fluids. In this paper, we present a quantitative theory of the long-time resonant mixing in 3D near-integrable flows. We use the flow between two coaxial elliptic counter-rotating cylinders as a demonstrative model, where multiple scatterings on resonance result in mixing by causing the jumps of adiabatic invariants. We improve the existing estimates of the width of the mixing domain. We show that the resulting mixing both on short and long time scales can be described in terms of a single diffusion-type equation with a diffusion coefficient depending on the averaged effect of multiple passages through resonances. We discuss the exact location of the boundaries of the chaotic domain and show how it affects the properties of mixing.  相似文献   
10.
We consider dynamics of phase boundaries in a bistable one-dimensional lattice with harmonic long-range interactions. Using Fourier transform and Wiener–Hopf technique, we construct traveling wave solutions that represent both subsonic phase boundaries (kinks) and intersonic ones (shocks). We derive the kinetic relation for kinks that provides a needed closure for the continuum theory. We show that the different structure of the roots of the dispersion relation in the case of shocks introduces an additional free parameter in these solutions, which thus do not require a kinetic relation on the macroscopic level. The case of ferromagnetic second-neighbor interactions is analyzed in detail. We show that the model parameters have a significant effect on the existence, structure, and stability of the traveling waves, as well as their behavior near the sonic limit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号