首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   2篇
物理学   2篇
  2023年   1篇
  2012年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
The integration of a microchannel with a nanochannel is known to exhibit anomalous nonlinear current-voltage characteristics. In this paper, we perform detailed numerical simulations considering a 2-D nonlinear ion transport model, to capture and explain the underlying physics behind the limiting resistance and the overlimiting current regions, observed predominantly in a highly ion-selective nanochannel. We attribute the overlimiting current characteristics to the redistribution of the space charges resulting in an anomalous enhancement in the ionic concentration of the electrolyte in the induced space charge region, beyond a critical voltage. The overlimiting current with constant conductivity is predicted even without considering the effects of fluidic nonlinearities. We extend our study and report anomalous rectification effects, resulting in an enhancement of current in the non-ohmic region, under the application of combined AC and DC electric fields. The necessary criteria to observe these enhancements and some useful scaling relations are discussed.  相似文献   
3.
The osmotic energy from a salinity gradient (i. e. blue energy) is identified as a promising non-intermittent renewable energy source for a sustainable technology. However, this membrane-based technology is facing major limitations for large-scale viability, primarily due to the poor membrane performance. An atomically thin 2D nanoporous material with high surface charge density resolves the bottleneck and leads to a new class of membrane material the salinity gradient energy. Although 2D nanoporous membranes show extremely high performance in terms of energy generation through the single pore, the fabrication and technical challenges such as ion concentration polarization make the nanoporous membrane a non-viable solution. On the other hand, the mesoporous and micro porous structures in the 2D membrane result in improved energy generation with very low fabrication complexity. In the present work, we report femtosecond (fs) laser-assisted scalable fabrication of μm to mm size pores on Graphene membrane for blue energy generation for the first time. A remarkable osmotic power in the order of μW has been achieved using mm size pores, which is about six orders of magnitudes higher compared to nanoporous membranes, which is mainly due to the diffusion-osmosis driven large ionic flux. Our work paves the way towards fs laser-assisted scalable pore creation in the 2D membrane for large-scale osmotic power generation.  相似文献   
4.
The attractive and multifunctional properties of holographic optical elements (HOEs) offer an opportunity to create compact optical systems for a wide range of applications. In this paper, we propose a novel method of focusing light onto a small region of space by an off-axis HOE that is illuminated from multiple directions in a plane. An off-axis spherical wave generated from a microscopic objective (0.65 NA) is combined with sequentially illuminated five reference waves at the recording plane. A multi-exposure technique is adopted for recording. A comparison between single-exposure and multi-exposure technique is also presented. The design parameters, performance and possible applications of these optical devices are described.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号