首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
化学   51篇
晶体学   3篇
力学   1篇
数学   7篇
物理学   7篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   8篇
  2013年   8篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
排序方式: 共有69条查询结果,搜索用时 93 毫秒
1.
A sensitive, rapid, and simple high‐performance liquid chromatography with UV detection method was developed for the simultaneous determination of seven phthalic acid esters (dimethyl phthalate, dipropyl phthalate, di‐n‐butyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di‐(2‐ethylhexyl) phthalate, and di‐n‐octyl phthalate) in several kinds of beverage samples. Ultrasound and vortex‐assisted dispersive liquid–liquid microextraction method was used. The separation was performed using an Intersil ODS‐3 column (C18, 250 × 4.6 mm, 5.0 μm) and a gradient elution with a mobile phase consisting of MeOH/ACN (50:50) and 0.2 M KH2PO4 buffer. Analytes were detected by a UV detector at 230 nm. The developed method was validated in terms of linearity, limit of detection, limit of quantification, repeatability, accuracy, and recovery. Calibration equations and correlation coefficients (> 0.99) were calculated by least squares method with weighting factor. The limit of detection and quantification were in the range of 0.019–0.208 and 0.072–0.483 μg/L. The repeatability and intermediate precision were determined in terms of relative standard deviation to be within 0.03–3.93 and 0.02–4.74%, respectively. The accuracy was found to be in the range of –14.55 to 15.57% in terms of relative error. Seventeen different beverage samples in plastic bottles were successfully analyzed, and ten of them were found to be contaminated by different phthalic acid esters.  相似文献   
2.
Metal–organic chemical vapor deposition (MOCVD) is one of the best growth methods for GaN-based materials as well-known. GaN-based materials with very quality are grown the MOCVD, so we used this growth technique to grow InAlN/GaN and AlN/GaN heterostructures in this study. The structural and surface properties of ultrathin barrier AlN/GaN and InAlN/GaN heterostructures are studied by X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements. Screw, edge, and total dislocation densities for the grown samples have been calculated by using XRD results. The lowest dislocation density is found to be 1.69 × 108 cm−2 for Sample B with a lattice-matched In0.17Al0.83N barrier. The crystal quality of the studied samples is determined using (002) symmetric and (102) asymmetric diffractions of the GaN material. In terms of the surface roughness, although reference sample has a lower value as 0.27 nm of root mean square values (RMS), Sample A with 4-nm AlN barrier layer exhibits the highest rough surface as 1.52 nm of RMS. The structural quality of the studied samples is significantly affected by the barrier layer thickness. The obtained structural properties of the samples are very important for potential applications like high-electron mobility transistors (HEMTs).  相似文献   
3.
4.
A humic substance was obtained from hazelnut husk using an alkali extraction. The chemical and morphological structure of the humic matter was characterized via elemental analysis, Fourier transform infrared spectrometry (FTIR), nuclear magnetic resonance, Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), and thermogravimetric-FTIR (TG-FTIR). In addition, thermal analysis measurements TG analysis-differential thermogravimetry/differential scanning calorimetry (TGA-DTG/DSC) were performed under dynamic air conditions to better determine the origin, physical and chemical structure, and decomposition process of the humic matter. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods were used to calculate the kinetic parameters of the high-temperature decomposition process. It was observed that the activation energy values were almost constant at certain conversion and temperature intervals. In addition, the structure of the humic substance at different temperatures was also investigated via FTIR analysis. It was found that the obtained humic substance had a very stable structure and decomposed at a high temperature. The stability of the humic matter can be a useful tool in the environmental quality research of soil.  相似文献   
5.
In this paper, we consider the problem where λ is a spectral parameter; q(x) ∈ L1(0,1) is complex‐valued function; αs, s = 1,2,3, are arbitrary complex constants that satisfy α2 = α1 + α3 and σ = 0,1. The boundary conditions of this problem are regular, but not strongly regular. Asymptotic formulae for eigenvalues and eigenfunctions of the considered boundary value problem are established. It is proved that all the eigenvalues, except for finite number, are simple and the system of root functions of this spectral problem forms a basis in the space Lp(0,1), 1 < p < ∞ , when ; moreover, this basis is unconditional for p = 2. We note that the considered problem was previously investigated in the condition of α2α1 + α3. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
Two new octahedral [Ni(phen)2(dppz-idzo)]2+ and [Co(phen)2(dppz-idzo)]3+ complexes have been synthesized and characterized by CHN analysis, electrospray ionization-MS, nuclear magnetic resonance, and UV–Vis spectra. The DNA-binding ability of these complexes was spectrophotometrically, hydrodynamically, and electrophoretically evaluated which indicated that they strongly intercalate into the DNA double helix, and that both induced severe DNA damage in the presence of peroxide. The complexes also showed strong antiproliferative effect against HepG2 and MDA-MB-231 cells. By contrast, they were found to be inactive against the MCF-7 cell line. The ligand itself was found to be inactive against the cells tested.  相似文献   
7.
8.
Although the sonophotodynamic method has an effective therapeutic outcome for anticancer treatment compared with the photodynamic method, there are not enough related studies in the literature and this study aims to contribute to the development of sonophotodynamic studies. For this purpose, the Schiff base substituted silicon phthalocyanines were designed and synthesized as effective sensitizer candidates and the photophysicochemical and sonophotochemical features of the phthalocyanines were examined to increase singlet oxygen efficiency. The calculated ΦΔ values indicate that the contribution of substituent groups improved the production of singlet oxygen compared with silicon (IV) phthalocyanine dichloride (SiPcCI2) and also the sonophotochemical applications increased the singlet oxygen yields. The ΦΔ values (ΦΔ = 0.76 for axially bis-{4-[(E)-(pyridin-3-ylimino)methyl]phenol} substituted silicon (IV) phthalocyanine ( 2a ), 0.68 for axially bis-4-[(E)-{[(pyridin-3-yl)methyl]imino}methyl]phenol substituted silicon (IV) phthalocyanine ( 2b ) in photochemical study) reached to ΦΔ = 0.98 for 2a , 0.94 for 2b in sonophotochemical study. This article will enrich the literature on increasing singlet oxygen yield.  相似文献   
9.
The crystal structure of 2-((5-amino-1,3,4-thiadiazol-2-yl)thio)-1-phenylethanone was determined by X-ray diffraction method. The compound crystallizes in orthorhombic crystal system, sp. gr. Pbca. The atoms that constitute thiadiazole and phenyl rings do not form any significant deviation from the ring planes. Compound has two intermolecular N–H···N hydrogen bonds and one C–H···π interaction. Using DFT/B3LYP method with 6-31G(d), 6-311G(d), 6-311G(d, p), and 6-311++G(d, p) basis sets, the molecular geometry of the compound was optimised. Bond lenghts, bond angles, torsion angles, dihedral angles, and HOMO–LUMO were calculated from the optimised geometry of the compound. The results obtained by X-ray diffraction method were compared with the results obtained through four different basis sets. Total energy of the molecule was calculated for four different basis sets.  相似文献   
10.
Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine   总被引:1,自引:0,他引:1  
Poly(amidoamine) (PAMAM) dendrimers are a novel class of spherical, well-designed branching polymers with interior cavities and abundant terminal groups on the surface which can form stable complexes with drugs, plasmid DNA, oligonucleotides, and antibodies. Amine‐terminated PAMAM dendrimers are able to solubilize different families of hydrophobic drugs, but the cationic charges on dendrimer surface may disturb the cell membrane. Therefore, surface modification by PEGylation, acetylation, glycosylation, and amino acid functionalization is a convenient strategy to neutralize the peripheral amine groups and improve dendrimer biocompatibility. Anticancer agents can be either encapsulated in or conjugated to dendrimer and be delivered to the tumor via enhanced permeability and retention (EPR) effect of the nanoparticle and/or with the help of a targeting moiety such as antibody, peptides, vitamins, and hormones. Biodegradability, non-toxicity, non-immunogenicity, and multifunctionality of PAMAM dendrimer are the key factors which facilitate steady increase of its application in drug delivery, gene transfection, tumor therapy, and diagnostics applications with precision and selectivity. This review deals with the major topics of PAMAM dendrimers including structure, synthesis, toxicity, surface modification, and also possible new applications of these spherical polymers in biomedical fields as dendrimer-based nanomedicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号