首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   19篇
物理学   1篇
  2019年   1篇
  2016年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
99Tc is one of the long lived fission product with high fission yield. From radioactive waste management point of view it is very much essential to evaluate the concentration of technetium in the radioactive liquid waste in order to finalise the treatment process to extract/isolate it from the stream which is discharged to the environment. For the estimation of 99Tc in the radioactive liquid waste stream, extraction of the stable complex of technetium-tetraphenyl arsonium chloride (TPAC) into chloroform followed by beta counting was studied. Various parameters like pH, time of equilibration, concentration of TPAC in chloroform, use of other solvent for extraction as well as interference of various other radionuclides present in the waste were also studied. The radioactive liquid waste being handled in plant contains high concentrations of salts in the form of sodium nitrate. Hence effect of salt concentration on the percentage extraction was also evaluated. The extraction behavior does not dependent on change in the pH of the solution. Almost 99.5% extraction was observed in the pH range of 1?C13.0. High concentration of salt is affecting the extraction. However, this can be taken care by diluting the radioactive waste. It takes almost 90?min time for maximum extraction. Presence of radionuclides like 137Cs, 90Sr are not interfering the extraction of 99Tc. However, 106Ru is getting slightly extracted along with 99Tc. The error due to 106Ru can be eliminated by taking gamma spectrum and deducting the activity from the total beta activity to get 99Tc activity. Nitrobenzene can be used for extraction of Tc?CTPAC complex in place of chloroform.  相似文献   
2.
Chemoselective reductions of alkenes, α,β-unsaturated carbonyl compounds, nitro and nitroso compounds, N,N-hydrogenolysis of azo and hydrazo functions as well as simultaneous reduction and hydrodehalogenation of substituted aryl halides, including bulkier substrates, were achieved by catalytic transfer hydrogenation (CTH) using mesoporous PdMCM-41 catalyst. The yields were practically unaffected upon recycling of the catalyst. Further, the CTH process is accomplished without affecting the reduction of any other reducible functional group.  相似文献   
3.
Diffusion of sodium in Mn and Ti bearing sodium borosilicate glass used for the immobilization of the high level waste at the Waste Immobilization Plant, Tarapur has been studied by heterogeneous isotopic exchange using 24Na as the radiotracer for sodium. The temperature dependence of the self-diffusion coefficient of sodium in the glass was found to follow Arrhenius equation below the glass transition temperature.  相似文献   
4.
5.
A convenient, practical and general method for the synthesis of symmetrical and unsymmetrical cyclic disulfides based on the reaction of sulfur with sodium sulfide in the presence of didecyldimethylammonium bromide (DDAB) as a phase transfer catalyst is described.  相似文献   
6.
Nickel hydroxide films were prepared using the chemical bath deposition (CBD) technique. The amorphous nature of the films was confirmed by X-ray diffraction measurements. X-ray photoelectron spectroscopy (XPS) measurements showed that the films exhibited nickel hydroxide nature. The porosity of the films was studied using optical measurements. The electrochromic properties of the porous nickel hydroxide layers were investigated, using cyclic voltammetry, chronoamperometry, in situ transmittance, UV-vis spectroscopy, and impedance spectroscopy. The change in the optical density (ΔOD) was found to be 0.79 for the as-deposited nickel hydroxide films, whereas it is 0.53 and 0.50 for the films annealed at 150 °C and 200 °C, respectively. The in situ transmittance and chronoamperometry curves revealed that the annealed films had a very fast colouration (tc < 290 ms) and decolouration (tb < 130 ms). The measured colouration efficiencies range between 30 and 40 cm2/C. The impedance measurements revealed the faster colouration and good electrochromic properties for the annealed nickel hydroxide films.  相似文献   
7.
Complexes of the type [Co(pic)(2)(NN)], where pic = picolinate, NN = dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4) and 4b,5,7,7a-tetrahydro-4b,7a-epiminomethanoimino-6H-imidazo[4,5-f][1,10]-phenanthroline-6,13-dione (bipyridyl-glycoluril) (bpg) (6) have been synthesized and characterized by elemental analysis, IR, UV-vis, NMR and ESI-MS spectroscopy and thermogravimetic analysis (TGA). Their physicochemical properties are compared with previously synthesized complexes, where NN = (H(2)O)(2) (1), 2,2'-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (5). The crystal structures of the complexes 4-6 were solved by single-crystal X-ray diffraction. The complexes 4 and 5 crystallize from a mixture of chloroform and methanol in monoclinic and orthorhombic crystal systems, respectively, whereas complex 6 crystallizes from dimethyl sulfoxide (DMSO) in a tetragonal crystal system. The coordination sphere consists of two oxygen atoms and two nitrogen atoms from the two picolinates and two nitrogen atoms from the dpq, dppz or bpg ligand, respectively. Co(ii)/Co(iii) oxidation potentials have been determined by cyclic voltammetry. The DNA binding of complexes 1-5 has been investigated using thermal melting, fluorescence quenching and viscosity measurements, which indicate the partial intercalation of complex 5 with an apparent binding constant (k(app)) of 8.3 × 10(5) M(-1). DNA cleavage studies of complexes 1-5 have been investigated using gel electrophoresis in the presence of H(2)O(2) as an oxidizing agent and also by photoirradiation at 365 nm. The mechanistic investigations suggest that singlet oxygen ((1)O(2)) is the major species involved in the DNA cleavage by these complexes. The structures of complexes 2-6 were optimized with density functional theory (DFT) method (B3LYP/6-31G(d,p)). The low vertical ionization potential values indicate photoredox pathways for the DNA cleavage activity by complexes 4 and 5, which is corroborated by DNA cleavage experiments.  相似文献   
8.
Purpose of the present work was to study in vitro permeation of gold nanoparticles (NPs) through isolated rat skin and intestine. Another objective was to see the effect of particle size on permeation of the gold NP. Gold NP of 15 nm, 102 nm and 198 nm were synthesized and used for study. Franz diffusion cells were used to evaluate permeation of gold NP from rat skin whereas 'intestinal sac' method was used for assessing intestinal permeation. Number density of gold NP was analyzed by UV-vis spectroscopy whereas amount of gold permeated was measured by ICP mass spectrometry. The absorption and localization of gold NP through rat skin was studied by TEM. Qualitative analysis of gold inside of the rat skin was performed by energy dispersive X-ray spectroscopy (EDS). Gold NP showed negative zeta potential. UV-vis absorption spectra of 15 nm, 102 nm and 198 nm gold NP showed lambda(max) at 520 nm, 535 nm and 577 nm, respectively. SEM study revealed spherical morphology of NP. Gold NP showed size dependent permeation through rat skin and intestine. 15 nm gold NP showed higher permeation compared to 102 nm and 198 nm gold NP. Interestingly, 102 nm and 198 nm gold NP showed lag time of 3h and 6h in case of rat skin only. As the size of the gold NP increased, permeability coefficient and diffusion coefficient was found to be decreased. The permeation of gold NP through intestine was higher than that of skin. TEM study of rat skin revealed accumulation of smaller size gold NP in deeper region of skin whereas larger particles were observed mainly in epidermis and dermis. Presence of gold inside of rat skin was confirmed by EDS. Gold NP would be an interesting carrier for transdermal as well as for oral delivery. The study demonstrated initial proof of concept of percutaneous permeation of smaller size gold particles.  相似文献   
9.
Purpose of the present research work was to evaluate the biological distribution of differently size gold nanoparticles (NP) up on intravenous administration in mice. Another objective was to study effect of particle size on biological distribution of gold NP to enable their diverse applications in nanotechnology. Gold NP of different particle sizes, mainly 15, 50, 100 and 200nm, were synthesized by modifying citrate ion concentration. Synthesized gold nanoparticles were characterized by SEM and their size distribution was studied by particle size analyzer. Gold NP was suspended in sodium alginate solution (0.5%, w/v) and administered to mice (1g/kg, intravenously) [n=3]. After 24h of administration of gold NP, blood was collected under light ether anesthesia, mice were sacrificed by cervical dislocation and various tissues/organs were removed. The tissues were then washed with saline, homogenized and lysed with aqua regia. The determination of gold in samples was carried out quantitatively by inductively coupled plasma mass spectrometry (ICP-MS). SEM study revealed spherical morphology of gold NP with narrow particle size distribution. Biodistribution study revealed gold NPs of all sizes were mainly accumulated in organs like liver, lung and spleen. The accumulation of gold NP in various tissues was found to be depending on particle size. 15nm gold NP revealed higher amount of gold and number of particles in all the tissues including blood, liver, lung, spleen, kidney, brain, heart, stomach. Interestingly, 15 and 50nm gold NP were able to pass blood-brain barrier as evident from gold concentration in brain. Two-hundred nanometers gold NP showed very minute presence in organs including blood, brain, stomach and pancreas. The results revealed that tissue distribution of gold nanoparticles is size-dependent with the smallest 15nm nanoparticles showing the most widespread organ distribution.  相似文献   
10.
Peptide nucleic acids (PNA) bind sequence specifically to DNA/RNA and are of major interest for all fields of molecular biology and could form the basis for gene‐targeted drugs. Modifications are introduced in PNA to overcome problems associated with orientational selectivity in binding, to restrict conformational flexibility of backbone, and to discriminate binding for either DNA or RNA. The addition of geometrical isomers (1R,2S and 1S,2R) of cyclohexyl ring in the backbone of PNA could bring rigidification to PNA backbone and may impart specificity toward RNA. Therefore, quantum chemical studies are aimed to explore the conformational space, to find out preferred stable conformations of PNA and modified (1R,2S and 1S,2R) cyclohexyl PNA monomer. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号