首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   1篇
化学   108篇
晶体学   2篇
力学   3篇
数学   9篇
物理学   20篇
  2022年   2篇
  2021年   2篇
  2018年   4篇
  2017年   1篇
  2015年   2篇
  2014年   8篇
  2013年   3篇
  2012年   9篇
  2011年   5篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   10篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   10篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
  1933年   1篇
排序方式: 共有142条查询结果,搜索用时 15 毫秒
1.
Structural characterization of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PI-4P), and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) by collisionally activated dissociation (CAD) tandem mass spectrometry with electrospray ionization is described. In negative ion mode, the major fragmentation pathways under low energy CAD for PI arise from neutral loss of free fatty acid substituents ([M - H - RxCO2H]-) and neutral loss of the corresponding ketenes ([M - H - R'xCH=C=O]-), followed by consecutive loss of the inositol head group. The intensities of the ions arising from neutral loss of the sn-2 substituent as a free fatty acid ([M - H - R2CO2H]-) or as a ketene ([M - H - R'2CH=C=O] ) are greater than those of ions reflecting corresponding losses of the sn-1 substutient. This is consistent with our recent finding that ions reflecting those losses arise from charge-driven processes that occur preferentially at the sn-2 position. These features permit assignment of the position of the fatty acid substituents on the glycerol backbone. Nucleophilic attack of the anionic phosphate onto the C-1 or the C-2 of the glycerol to which the fatty acids attached expels sn-1 (R1CO2-) or sn-2 (R2CO2-) carboxylate anion, respectively. This pathway is sterically more favorable at sn-2 than at sn-1. However, further dissociations of [M - H - RxCO2H - inositol] , [M - H - RxCO2H]-, and [M - H - RxCH=C=O]- precursor ions also yield RxCO2- ions, whose abundance are affected by the collision energy applied. Therefore, relative intensities of the RxCO2- ions in the spectrum do not reflect their positions on the glycerol backbone and determination of their regiospecificities based on their ion intensities is not reliable. The spectra also contain specific ions at m/z 315, 279, 259, 241, and 223, reflecting the inositol head group. The last three ions are also observed in the tandem spectra of the [M - H]- ions of phosphatidylinositol monophosphate (PI-P) and phosphatidylinositol bisphosphate (PI-P2), in addition to the ions at m/z 321 and 303, reflecting the doubly phosphorylated inositol ions. The PI-P2 also contains unique ions at m/z 401 and 383 that reflect the triply phosphorylated inositol ions. The [M - H]- ions of PI-P and PI-P2 undergo fragmentation pathways similar to that of PI upon CAD. However, the doubly charged ([M - 2H]2-) molecular ions undergo fragmentation pathways that are typical of the [M - H]- ions of glycerophosphoethanolamine, which are basic. These results suggest that the further deprotonated gaseous [M - 2H]2 ions of PI-P and PI-P2 are basic precursors.  相似文献   
2.
Alkaline metal adduct ions of sphingomyelin were formed by electrospray ionization in positive ion mode. Under low energy collisionally activated dissociation (CAD), the product ion spectra yield abundant fragment ions representative of both long chain base and fatty acid which permit unequivocal determination of the structure. Tandem spectra obtained by constant neutral loss scanning permit identification of sphingomyelin class and specific long chain base subclass in the mixture. The fragmentation pathways under CAD were proposed, and were further confirmed by source CAD tandem mass spectrometry. The total analysis of sphingomyelin mixtures from bovine brain, bovine erythrocytes, and chicken egg yolk is also presented.  相似文献   
3.
A mechanistic study of diacyl glycerophosphatidic acid (GPA) under low energy collisionally activated decomposition (CAD) with electrospray ionization tandem mass spectrometry is reported. The fragmentation pathways leading to the formation of carboxylate anions [RxCO2-], (x = 1, 2) and the formation of the ions representing neutral loss of fatty acid ([M-H-RxCO2H] ) and neutral loss of ketene ([M-H-R'xCH-C=O] ) (Rx=R'xCH2) are charge-driven processes that are governed by the gas-phase basicity and the steric configuration of the molecules. The preferential formation of the ions of [M-H-R2CO2H]- > [M-H-R1CO2H]- and [M-H-R'2CH=C=O]- > [M-H-R'1CH=C=O]- are attributed to the fact that loss of fatty acid and loss of ketene are sterically more favorable at sn-2. While the observation of the abundance of [M-H-RxCO2H]- > [M-H-R'xCH=C=O]- is attributed to the acidity of the gas phase ion of GPA, which undergoes a more facile neutral loss of acid than loss of ketene. The major pathway leading to the formation of RxCO2- ion under low energy CAD arises from further fragmentation of the [M-H-RxCO2H]- ions by neutral loss of 136, resulting in an abundance of R1CO2- > R2CO2-. The differential formation of the carboxylate anions permits accurate assignment of the regiospecificity of the fatty acid substituents of GPA molecules by tandem mass spectrometry.  相似文献   
4.
Oxidation of 4-[3-(dimethylamino)propyl]-3,4-dihydro-2-(1-hydroxyethyl)-3-phenyl-2H-1,4-benzothiazine, hydrochloride (I) with hydrogen peroxide yielded a mixture of two sulfoxides (II). Since this mixture exhibited antiinflammatory activity, the two components (Isomers A and B) were prepared in purified form by oxidation of I with N-chlorosuccinimide and hydrogen peroxide, respectively. Isomer A was more potent than Isomer B in the carrageenin-induced edema test.  相似文献   
5.
We describe a linear ion-trap (LIT) multiple-stage (MSn) mass spectrometric approach towards differentiation of alkylacyl, alk-1-enylacyl- and diacyl-glycerophoscholines (PCs) as the [M – 15] ions desorbed by electrospray ionization (ESI) in the negative-ion mode. The MS4 mass spectra of the [M – 15 – R2′CH = CO] ions originated from the three PC subfamilies are readily distinguishable, resulting in unambiguous distinction of the lipid classes. This method is applied to two alkyl ether rich PC mixtures isolated from murine bone marrow neutrophils and kidney, respectively, to explore its utility in the characterization of complex PC mixture of biological origin, resulting in the realization of the detailed structures of the PC species, including various classes and many minor isobaric isomers.
Graphical abstract
?  相似文献   
6.
The RNA world hypothesis requires that early translation be catalyzed by RNA enzymes. Here we show that a five-nucleotide RNA enzyme, reacting with a tetranucleotide substrate and elevated PheAMP, forms aminoacyl- and peptidyl-RNAs RNA-Phe through RNA-Phe(5). A second series of products is formed from RNA-Phe diesters, after trans migration of phenylalanine from the 2'- to the 3'-hydroxyl group of the substrate RNA, followed by reaminoacylation of the 2'-OH. While the ribozyme is required for initial attachment of phenylalanine to an RNA substrate, as well as reacylation (and thus for formation of all products), further extension into RNA-peptides appears to be an uncatalyzed, but RNA-stimulated reaction. The ribozyme readily turns over at high PheAMP and GCCU concentrations. Thus, GUGGC/GCCU comprises a true RNA enzyme. We define Michaelis-Menten parameters plus and minus divalent magnesium and characterize ca. 20 molecular species of aminoacyl-, peptidyl-, dipeptidyl-, and mixed peptidyl/aminoacyl-RNAs.  相似文献   
7.
8.
Low-energy CAD product-ion spectra of various molecular species of phosphatidylserine (PS) in the forms of [M−H] and [M−2H+Alk] in the negative-ion mode, as well as in the forms of [M+H]+, [M+Alk]+, [M−H+2Alk]+, and [M−2H+3Alk]+ (where Alk=Li, Na) in the positive-ion mode contain rich fragment ions that are applicable for structural determination. Following CAD, the [M−H] ion of PS undergoes dissociation to eliminate the serine moiety (loss of C3H5NO2) to give a [M−H−87] ion, which equals to the [M−H] ion of a phoshatidic acid (PA) and give rise to a MS3-spectrum that is identical to the MS2-spectrum of PA. The major fragmentation process for the [M−2H+Alk] ion of PS arises from primary loss of 87 to give rise to a [M−2H+Alk−87] ion, followed by loss of fatty acid substituents as acids (RxCO2H, x=1,2) or as alkali salts (e. g., RxCO2Li, x=1,2). These fragmentations result in a greater abundance of [M−2H+Alk−87−R2CO2H] than [M−2H+Alk−87−R1CO2H] and a greater abundance of [M−2H+Alk−87−R2CO2Li] than [M−2H+Alk−87−R1CO2Li]; while further dissociation of the [M−2H+Alk−87−R2(or 1)CO2Li] ions gives a preferential formation of the carboxylate anion at sn-1 (R1CO2) over that at sn-2 (R2CO2). Other major fragmentation process arises from differential loss of the fatty acid substituents as ketenes (loss of Rx′CH=CO, x=1,2). This results in a more prominent [M−2H+Alk−R2′CH=CO] ion than [M−2H+Alk−R1′CH=CO] ion. Ions informative for structural characterization of PS are of low abundance in the MS2-spectra of both the [M+H]+ and the [M+Alk]+ ions, but are abundant in the MS3-spectra. The MS2-spectrum of the [M+Alk]+ ion contains a unique ion corresponding to internal loss of a phosphate group probably via the fragmentation processes involving rearrangement steps. The [M−H+2Alk]+ ion of PS yields a major [M−H+2Alk−87]+ ion, which is equivalent to an alkali adduct ion of a monoalkali salt of PA and gives rise to a greater abundance of [M−H+2Alk−87−R1CO2H]+ than [M−H+2Alk−87−R2CO2H]+. Similarly, the [M−2H+3Alk]+ ion of PS also yields a prominent [M−2H+3Alk−87]+ ion, which undergoes consecutive dissociation processes that involve differential losses of the two fatty acyl substituents. Because all of the above tandem mass spectra contain several sets of ion pairs involving differential losses of the fatty acid substituents as ketenes or as free fatty acids, the identities of the fatty acyl substituents and their positions on the glycerol backbone can be easily assigned by the drastic differences in the abundances of the ions in each pair.  相似文献   
9.
We describe tandem mass spectrometric approaches, including multiple stage ion-trap and source collisionally activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) to characterize inositol phosphorylceramide (IPC) species seen as [M - H](-) and [M - 2H + Li](-) ions in the negative-ion mode as well as [M + H](+), [M + Li](+), and [M - H + 2Li](+) ions in the positive-ion mode. Following CAD in an ion-trap or a triple-stage quadrupole instrument, the [M - H](-) ions of IPC yielded fragment ions reflecting only the inositol and the fatty acyl substituent of the molecule. In contrast, the mass spectra from MS(3) of [M - H - Inositol](-) ions contained abundant ions that are readily applicable for assignment of the fatty acid and long-chain base (LCB) moieties. Both the product-ion spectra from MS(2) and MS(3) of the [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) ions also contained rich fragment ions informative for unambiguous assignment of the fatty acyl substituent and the LCB. However, the sensitivity of the ions observed in the forms of [M - 2H + Alk](-), [M + H](+), [M + Alk](+), and [M - H + 2Alk](+) (Alk = Li, Na) is nearly 10 times less than that observed in the [M - H](-) form. In addition to the major fragmentation pathways leading to elimination of the inositol or inositol monophosphate moiety, several structurally informative ions resulting from rearrangement processes were observed. The fragmentation processes are similar to those previously reported for ceramides. While the tandem mass spectrometric approach using MS(n) (n = 2, 3) permits the structures of the Leishmania major IPCs consisting of two isomeric structures to be unveiled in detail, tandem mass spectra from constant neutral loss scans may provide a simple method for detecting IPC in mixtures.  相似文献   
10.
We developed the Lipid Qualitative/Quantitative Analysis (LipidQA) software platform to identify and quantitate complex lipid molecular species in biological mixtures. LipidQA can process raw electronic data files from the TSQ-7000 triple stage quadrupole and LTQ linear ion trap mass spectrometers from Thermo-Finnigan and the Q-TOF hybrid quadrupole/time-of-flight instrument from Waters-Micromass and could readily be modified to accommodate data from others. The program processes multiple spectra in a few seconds and includes a deisotoping algorithm that increases the accuracy of structural identification and quantitation. Identification is achieved by comparing MS(2) spectra obtained in a data-dependent manner to a library of reference spectra of complex lipids that we have acquired or constructed from established fragmentation rules. The current form of the algorithm can process data acquired in negative or positive ion mode for glycerophospholipid species of all major head-group classes.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号