首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   16篇
化学   132篇
力学   3篇
数学   19篇
物理学   19篇
  2023年   3篇
  2022年   4篇
  2021年   9篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   9篇
  2014年   11篇
  2013年   12篇
  2012年   26篇
  2011年   18篇
  2010年   5篇
  2009年   2篇
  2008年   14篇
  2007年   13篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
1.
Gas-phase proton affinities of cyclophanes containing intra-annular amino groups were calculated using density functional theory (DFT) at the B3LYP/6-31+G∗∗//B3LYP/6-31G level. They are higher in magnitude as those for proton sponges such as 1,8-bisaminonaphthalene, however, they are slightly weaker bases than 1,8-bis(dimethylamino)naphthalene. The high basicity of the cyclophane diamines is attributed mainly to their structural flexibility, which allows them to maximize the hydrogen bond strength in the cations by achieving N-H?N linearity, while strain relief upon protonation is less important. Another contributing factor is the stabilizing interaction of the added proton with adjacent phenyl π systems of the cyclophanes. Barriers for proton transfer between the nitrogen atoms of the diamine cations are also reported.  相似文献   
2.
3.
As a continuation of our efforts to develop new heterogeneous nanomagnetic catalysts for greener reactions, we identified a Schiff base–palladium(II) complex anchored on magnetic nanoparticles (SB‐Pd@MNPs) as a highly active nanomagnetic catalyst for Suzuki–Miyaura cross‐coupling reactions between phenylboronic acid and aryl halides and for the reduction of nitroarenes using sodium borohydride in an aqueous medium at room temperature. The SB‐Pd@MNPs nanomagnetic catalyst shows notable advantages such as simplicity of operation, excellent yields, short reaction times, heterogeneous nature, easy magnetic work up and recyclability. Characterization of the synthesized SB‐Pd@MNPs nanomagnetic catalyst was performed with various physicochemical methods such as attenuated total reflectance infrared spectroscopy, UV–visible spectroscopy, inductively coupled plasma atomic emission spectroscopy, energy‐dispersive X‐ray spectroscopy, field‐emission scanning electron microscopy, transmission electron microscopy, powder X‐ray powder diffraction, thermogravimetric analysis and Brunauer–Emmett–Teller surface area analysis.  相似文献   
4.
The debate over the orbital order in the layered triangular lattice system NaTiO2 has been rekindled by the recent experiments of McQueen et al. [Phys. Rev. Lett. 101 (2008) 166402] on NaVO2. In view of this, the nature of orbital ordering, in both high and low temperature phases, is studied using an ab-initio electronic structure calculation. The orbital order observed in our calculations in the low temperature structure of NaTiO2 is consistent with the predictions of McQueen et al. An LDA plus dynamical mean-field calculation shows considerable transfer of spectral weight from the Fermi level but no metal–insulator transition, confirming the poor metallic behavior observed in transport measurements.  相似文献   
5.
We are concerned with convergence of spectral method for the numerical solution of the initial-boundary value problem associated to the Korteweg-de Vries-Kawahara equation (Kawahara equation, in short), which is a transport equation perturbed by dispersive terms of the 3rd and 5th order. This equation appears in several fluid dynamics problems. It describes the evolution of small but finite amplitude long waves in various problems in fluid dynamics. These equations are discretized in space by the standard Fourier-Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L 2-error bound of spectral accuracy in space and of second-order accuracy in time.  相似文献   
6.
7.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   
8.
Visible light excitable rhodamine B derivative (TARDHD) has been developed for fluorescence and naked eye detection of histidine in aqueous medium. TARDHD shows 45 fold fluorescence enhancement in the presence of histidine. It forms Schiff base with histidine and stabilizes via intra-molecular H-bonding. TARDHD can efficiently detect intracellular histidine.  相似文献   
9.
An asymmetric, organocatalytic, one‐pot Mannich cyclization between a hydroxylactam and acetal is described to provide fused, bicyclic alkaloids bearing a bridgehead N atom. Both aliphatic and aromatic substrates were used in this transformation to furnish chiral pyrrolizidinone, indolizidinone, and quinolizidinone derivatives in up to 89 % yield and 97 % ee. The total syntheses of (?)‐epilupinine, (?)‐tashiromine, and (?)‐trachelanthamidine also achieved to demonstrate the generality of the process.  相似文献   
10.
Arsenic is a natural element found in the environment in organic and inorganic forms. The inorganic form is much more toxic and is found in ground water, surface water and many foods. This form is responsible for many adverse health effects like cancer (skin, lung, liver, kidney and bladder mainly), and cardiovascular and neurological effects. The estimated number of people in Bangladesh in 1998 exposed to arsenic concentrations above 0.05 mg/l is 28–35 million, and the number of those exposed to more than 0.01 mg/l is 46–57 million. The estimated number of people in West Bengal, India (the border province to Bangladesh), in 1997 actually using arsenic-rich water is more than 1 million for concentrations above 0.05 mg/l and is 1.3 million for concentrations above 0.01 mg/l. The United States Environmental Protection Agency (USEPA) has estimated that 13 million of the US population are exposed to arsenic in drinking water at 0.01 mg/l. The situation has prevailed for more than 10 years and is more severe now. The USEPA lowered the maximum contaminant level (MCL) for drinking water arsenic from 50 to 10 μg/l in 2001 based on international data analysis and research. This recommendation is now on hold. The level of 10 ppb become standard in the European Union (EU) in 2001. Arsenic may be found in water flowing through arsenic-rich rocks. The source is diverse. These include the earth's crust, introduced into water through the dissociation of minerals and ores, industrial effluents to water, combustion of fossil fuels and seafoods. Arsenic-removal methods are coagulation (ferric sulfate, ferrous sulfate, ferric chloride, aluminum sulfate, copper sulfate, and calcium hydroxide as coagulants), adsorption (activated carbon, activated alumina, activated bauxite) ion exchange, bio-sorption, etc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号