首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   13篇
化学   131篇
晶体学   1篇
力学   2篇
数学   8篇
物理学   33篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   10篇
  2014年   5篇
  2013年   8篇
  2012年   16篇
  2011年   13篇
  2010年   8篇
  2009年   4篇
  2008年   11篇
  2007年   13篇
  2006年   10篇
  2005年   6篇
  2004年   7篇
  2003年   7篇
  2002年   7篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
1.
The reactions of bis(trimethylstannyl)ethyne, Me3Sn–C?C–SnMe3 ( 4 ), with trimethylsilyl‐ or dimethylsilyl‐dialkylboryl‐substituted alkenes 1 – 3 afford organometallic‐substituted allenes 5 , 6 and 8 , 9 in high yield. In the case of (E)‐2‐trimethylsilyl‐3‐diethylboryl‐2‐pentene ( 1) , a butadiene derivative 7 could be detected as an intermediate prior to rearrangement into the allene. All reactions were monitored by 29Si and 119Sn NMR, and the products were characterized by an extensive NMR data set (1H, 11B, 13C, 29Si, 119Sn NMR). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
3.
The reaction between arachno-4-CB(8)H(14) and PCl(3) in the presence of PS (PS = proton sponge = 1,8-dimethylamino naphthalene) (dichloromethane, rt, 24 h) produced the neutral phosphacarborane closo-2,1-PCB(8)H(9) (35% yield), while a similar reaction of nido-1-CB(8)H(12) gave the isomeric compound closo-6,1-PCB(8)H(9) (27% yield). The structures of both compounds were derived on the basis of the combined ab initio/GIAO/NMR ((1)H, (11)B, (13)C) approach. The optimized structures at a correlated level of theory (MP2) with 6-31G* basis set were used as a basis for calculations of the (11)B and (13)C chemical shifts at GIAO-SCF/II and GIAO-MP2/II, the latter showing excellent agreement with experimental data.  相似文献   
4.
New 3,3‐diphenylpropoxyphthalonitrile (5) was obtained from 3,3‐diphenylpropanol (3) and 4‐nitrophthalonitrile (4) with K2CO3 in DMF at 50 °C. The novel cobalt(II) phthalocyanine complexes, tetrakis‐[2‐(1,4‐dioxa‐8‐azaspiro[4.5]dec‐8‐yl)ethoxy] phthalocyaninato cobalt(II) (2) and tetrakis‐(3,3‐diphenylpropoxy)phthalocyaninato cobalt(II) (6) were prepared by the reaction of the phthalonitrile derivatives 1 and 5 with CoCl2 by microwave irradiation in 2‐(dimethylamino)ethanol for at 175 °C, 350 W for 7 and 10 min, respectively. These new cobalt(II)phthalocyanine complexes were characterized by spectroscopic methods (IR, UV–visible and mass spectroscopy) as well as elemental analysis. Complexes 2 and 6 are employed as catalyst for the oxidation of cyclohexene using tert‐butyl hydroperoxide (TBHP), m‐chloroperoxybenzoic acid (m‐CPBA), aerobic oxygen and hydrogen peroxide (H2O2) as oxidant. It is observed that both complexes can selectively oxidize cyclohexene to give 2‐cyclohexene‐1‐ol as major product, and 2‐cyclohexen‐1‐one and cyclohexene oxide as minor products. TBHP was found to be the best oxidant since minimal destruction of the catalyst, higher selectivity and conversion were observed in the products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
The reaction of di(alkyn‐1‐yl)vinylsilanes R1(H2C═CH)Si(C≡C―R)2 (R1 = Me ( 1 ), Ph ( 2 ); R = Bu (a), Ph (b), Me2HSi (c)) at 25°C with 1 equiv. of 9‐borabicyclo[3.3.1]nonane (9‐BBN) affords 1‐silacyclopent‐2‐ene derivatives ( 3a , 3b , 3c , 4a , 4b ), bearing one Si―C≡C―R function readily available for further transformations. These compounds are formed by consecutive 1,2‐hydroboration followed by intramolecular 1,1‐carboboration. Treated with a further equivalent of 9‐BBN in benzene they are converted at relatively high temperature (80–100°C) into 1‐alkenyl‐1‐silacyclopent‐2‐ene derivatives ( 5a , 5b 6a , 6b ) as a result of 1,2‐hydroboration of the Si―C≡C―R function. Protodeborylation of the 9‐BBN‐substituted 1‐silacyclopent‐2‐ene derivatives 3 , 4 , 5 , 6 , using acetic acid in excess, proceeds smoothly to give the novel 1‐silacyclopent‐2‐ene ( 7 , 8 , 9 , 10 ). The solution‐state structural assignment of all new compounds, i.e. di(alkyn‐1‐yl)vinylsilanes and 1‐silacyclopent‐2‐ene derivatives, was carried out using multinuclear magnetic resonance techniques (1H, 13C, 11B, 29Si NMR). The gas phase structures of some examples were calculated and optimized by density functional theory methods (B3LYP/6‐311+G/(d,p) level of theory), and 29Si NMR parameters were calculated (chemical shifts δ29Si and coupling constants nJ(29Si,13C)). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
The substituted pyrolidine derivatives with high stereoselectivity were obtained through cycloaddition reaction in the presence of a Lewis acid namely diethylzinc by solvent‐free grinding method.  相似文献   
7.
An approach to investigation of catalytical behaviors of Co (II) and Cu (II) phthalocyanines is reported that is based on changing any parameter to effect these behaviors. Towards this end, new anthracene substituted Co (II) and Cu (II) phthalocyanines were prepared and characterized spectroscopic methods. New cobalt (II) and copper (II) phthalocyanines were used as catalyst for oxidation of different phenolic compounds (such as 2,3‐dichlorophenol, 4‐methoxyphenol, 4‐nitrophenol, 2,3,6‐trimethylphenol) with different oxidants. Then, electrochemical characterization of cobalt (II) and copper (II) phthallocyanines were determined by using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. Although copper (II) phthalocyanine showed similar Pc based electron transfer processes, cobalt (II) phthalocyanine showed metal and ligand based reduction reactions as expected.  相似文献   
8.
A SiC nanomesh is used as a nanotemplate to direct the epitaxy of C60 molecules. The epitaxial growth of C60 molecules on SiC nanomesh at room temperature is investigated by in situ scanning tunneling microscopy, revealing a typical Stranski-Krastanov mode (i.e., for the first one or two monolayers, it is a layer-by-layer growth or 2-D nucleation mode; at higher thicknesses, it changes to island growth or a 3-D nucleation mode). At submonolayer (0.04 and 0.2 ML) coverage, C60 molecules tend to aggregate to form single-layer C60 islands that mainly decorate terrace edges, leaving the uncovered SiC nanomesh almost free of C60 molecules. At 1 ML C60 coverage, a complete wetting layer of hexagonally close-packed C60 molecules forms on top of the SiC nanomesh. At higher coverage from 4.5 ML onward, the C60 stacking adopts a (111) oriented face-centered-cubic (fcc) structure. Strong bright and dim molecular contrasts have been observed on the first layer of C60 molecules, which are proposed to originate from electronic effects in a single-layer C60 island or the different coupling of C60 molecules to SiC nanomesh. These STM molecular contrast patterns completely disappear on the second and all the subsequent C60 layers. It is also found that the nanomesh can be fully recovered by annealing the C60/SiC nanomesh sample at 200 degrees C for 20 min.  相似文献   
9.
4-methyl-4-trichloromethylcyclohexadiene triphenylphosphonium ylide obtained by treatment of (1-methyl-1-tricholoromethylcyclohexa-2,4-dien-4-yl)-triphenylphosphonium bromide with BunLi in THF is stabilized by the abstraction of the CCl3 group to give (p-tolyl)triphenylphosphonium cation, which was isolated as the corresponding hydroxide. Conversely, an analogous pyridinium ylide, obtained by treatment ofZ/E stereoizomericN-(1-methyl-1-trichloromethylcyclohexa-2,5-dien-4-yl)pyridiunium bromide with a base (piperidine in CD2Cl2, BunLi in THF), at temperatures above −40 °C, undergoes a novel high-yield aromatizational skeletal rearrangement with migration of the CCl3 group to position 2 of the heterocycle. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 386–388, February, 1997.  相似文献   
10.
In the present study, the voltammetric and impidimetric detection of microRNA‐21, mir‐21 from cell lysates was investigated for the first time by using graphene modified disposable pencil graphite electrodes (GME). The surface characterization of GME was performed via electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Upon passive adsorption of inosine substituted antimicroRNA‐21, antimir‐21 probe, InP, onto the surface of GME and then solid phase hybridization of InP with mir‐21, the target, the electrochemical detection was performed by using Differential Pulse Voltammetry (DPV) and EIS techniques. This developed biosensor, GME has presented a 2.77 times lower detection limit of 2.09 µg/mL (3.12 pmol) with respect to unmodified pencil graphite electrode (GE). Moreover it is capable of analyzing mir‐21 in the cell lysates of mir‐21 positive breast cancer cell line (MCF‐7) contrast to mir‐21 negative hepatoma cell line (HUH‐7). The proposed electrochemical yes‐no system does not require any purification and/or amplification step prior to fast detection of mir‐21 from real samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号