首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   5篇
晶体学   1篇
物理学   18篇
  2019年   1篇
  2017年   1篇
  2012年   2篇
  2011年   1篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
A study of silicon modification induced by a high intensity picosecond Nd:YAG laser, emitting at 1064 nm, is presented. It is shown that laser intensities in the range of 5 × 1010-0.7 × 1012 W cm−2 drastically modified the silicon surface. The main modifications and effects can be considered as the appearance of a crater, hydrodynamic/deposition features, plasma, etc. The highest intensity of ∼0.7 × 1012 W cm−2 leads to the burning through a 500 μm thick sample. At these intensities, the surface morphology exhibits the transpiring of the explosive boiling/phase explosion (EB) in the interaction area. The picosecond Nd:YAG laser-silicon interaction was typically accompanied by massive ejection of target material in the surrounding environment. The threshold for the explosive boiling/phase explosion (TEB) was estimated to be in the interval 1.0 × 1010 W cm−2 < TEB ≤ 3.8 × 1010 W cm−2.  相似文献   
2.
Interaction of Nd:YAG laser, operating at 266 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage threshold was estimated to be 0.14 J/cm2. The steel surface modification was studied at the laser fluence of ∼1.0 J/cm2. The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) intensive damage of the target in the central zone of irradiated area; (ii) appearance of periodic surface structures at nano-level, with periodicity in agreement with the used wavelength; (iii) reduction of oxygen concentration in irradiated area; and (iv) development of plasma in front of the target. Generally, interaction of laser beam with AISI 1045 steel (at 266 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be modified in short times.  相似文献   
3.
Interaction of an Nd:YAG laser, operating at 532 nm wavelength and pulse duration of 40 ps, with tungsten-titanium (WTi) thin film (thickness, 190 nm) deposited on single silicon (100) substrate was studied. Laser fluences of 10.5 and 13.4 J/cm2 were found to be sufficient for modification of the WTi/silicon target system. The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following WTi/silicon surface morphological changes were observed: (i) ablation of the thin film during the first laser pulse. The boundary of damage area was relatively sharp after action of one pulse whereas it was quite diffuse after irradiation with more than 10 pulses; (ii) appearance of some nano-structures (e.g., nano-ripples) in the irradiated region; (iii) appearance of the micro-cracking. The process of the laser interaction with WTi/silicon target was accompanied by formation of plasma.  相似文献   
4.
Diamond coatings were deposited by synergy of the hot filament CVD method and the pulse TEA CO2 laser, in spectroactive and spectroinactive diamond precursor atmospheres. Resulting diamond coatings are interpreted relying on evidence of scanning electron microscopy as well as microRaman spectroscopy. Thermal synergy component (hot filament) possesses an activating agent for diamond deposition, and contributes significantly to quality and extent of diamond deposition. Laser synergy component comprises a solid surface modification as well as the spectroactive gaseous atmosphere modification. Surface modification consists in changes of the diamond coating being deposited and, at the same time, in changes of the substrate surface structure. Laser modification of the spectroactive diamond precursor atmosphere means specific consumption of the precursor, which enables to skip the deposition on a defined substrate location. The resulting process of diamond coating elimination from certain, desired locations using the CO2 laser might contribute to tailoring diamond coatings for particular applications. Additionally, the substrate laser modification could be optimized by choice of a proper spectroactive precursor concentration, or by a laser radiation multiple pass through an absorbing medium.  相似文献   
5.

Surface changes created by interaction of transversely excited atmospheric carbon dioxide (TEA CO2) laser with titanium target/implant in nitrogen and carbon dioxide gas were studied. TEA CO2 laser operated at 10.6 μm, pulse length of 100 ns and fluence of ∼17 J/cm2 which was sufficient for inducing surface modifications. Induced changes depend on the gas used. In both gases the grain structure was produced (central irradiated zone) but its forms were diverse, (N2: irregular shape; CO2: hill-like forms). Hydrodynamic features at peripheral zone, like resolidified droplets, were recorded only in CO2 gas. Elemental analysis of the titanium target surface indicated that under a nitrogen atmosphere surface nitridation occurred. In addition, irradiation in both gases was followed by appearance of plasma in front of the target. The existence of plasma indicates relatively high temperatures created above the target surface offering a sterilizing effect.

  相似文献   
6.
Application of non-contact and rapid laser technique, which is minimally invasive, non-contaminant and efficient method, for ancient glass investigation and cleaning is highly desirable for restoration purposes. Irradiation of Roman glass dated from 1st to 4th/5th century AD with TEA CO2 (wavelength 10.6 μm; pulse duration tp = 100 ns), Nd:YAG (wavelength 1064 nm and 532 nm; tp = 150 ps) and ruby laser (wavelength 694 nm; tp = 30 ns) in air ambience was studied. For all three lasers, moderate energy densities (15–30 J/cm2) induced significant changes of morphology — from superficial exfoliation and occurrence of mosaic structure after few pulses to deep damages and hydrodynamic features after higher number of accumulated shots. Irradiation with moderate energy density, accompanied with plasma appearance in front of the samples, is convenient for numerous potential applications, particularly surface elemental analysis such as laser induced breakdown spectroscopy. On the other hand, lower densities are more suitable for Roman glass cleaning. Calculations of Roman glass surface temperature have shown that pulsed CO2 laser is favorable for surface cleaning and optimal fluence is ~ 2 J/cm2. This was confirmed by additional experiments for fluences 1.5 and 3 J/cm2. Morphological changes on the Roman glass surface induced by lasers were studied by optical microscopy (OM) and scanning electron microscopy (SEM). The composition of Roman glass was determined by energy dispersive X-ray analysis (EDX) and inductively coupled plasma (ICP) method. Chemical analysis confirmed that the investigated glass dates from the Roman period.  相似文献   
7.
Interaction of Nd:YAG laser, operating at 1064 or 532 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage thresholds were estimated to be 0.30 and 0.16 J/cm2 at the wavelengths of 1064 and 532 nm, respectively. The steel surface modification was studied at the laser energy density of 10.3 J/cm2 (at 1064 nm) and 5.4 J/cm2 (at 532 nm). The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) both laser wavelengths cause damage of the steel in the central zone of irradiated area; (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with 1064 nm laser wavelength; (iii) appearance of periodic surface structures, at micro- and nano-level, with the 532 nm wavelength and, (iv) development of plasma in front of the target. Generally, interaction of laser beam with the AISI 1045 steel (at 1064 and 532 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be processed in short time.  相似文献   
8.
This report describes an experimental examination of the output characteristics of the continuous-wave (cw) carbon monoxide flame chemical laser (FCL) of the CS2/O2/N2O type in case of small CS2/O2 reactants ratios (tipically CS2/O2≦1/10). A linear burner which gives a homogeneous and stable flame was used during the experimental study. The measurements of temperature distribution in CS2/O2 as well as CS2/O2/N2O flames show maximum temperatures of 1040 and 890 K, respectively. The addition of nitrous oxide (N2O) leads to dramatically enhanced output laser power caused primarily by V?V transfer processes. A chemical efficiency, based on the reaction O+CS→CO*+S, of 3% was achieved. The spectral composition of the CO FCL of the CS2/O2/N2O type shows lasing in the region from 5.130 to 5.586 μm. Experimental results were obtained with a nondispersive optical cavity.  相似文献   
9.
Zusammenfassung Ein Verfahren zur schnellen Bestimmung von Cystein durch potentiometrische Titration wurde angegeben. Cystein wird mit Palladium(II)chlorid in Acetatpuffer unter Anwendung von Platin als Indikatorelektrode titriert. Dabei entsteht ein stabiler Komplex. Zum Potentialsprung kommt es, wenn das stöchiometrische Verhältnis Pd(II)Cystein 12 beträgt. Die Ergebnisse zeigen, daß sich die Methode zur Bestimmung von Cystein in Mikromengen eignet.
The determination of cystein by potentiometric titration
Summary The procedure for rapid determination of cysteine by potentiometric titration is given. Cysteine is titrated with a solution of palladium(II)- chloride in acetate buffer with use of platinum as an indicator electrode. A stable complex has been formed. A significant jump of the potential appears when the stoichiometric ratio of palladium(II) to cysteine is 12. The results show that this method is suitable for the determination of cysteine in micro quantities.
  相似文献   
10.
Interactions of a transversely excited atmospheric (TEA) CO2 laser, pulse duration ∼2 μs (initial spike FWHM ∼120 ns), with polycrystalline titanium nitride (TiN) coatings deposited on high-quality steel (AISI 316 or M2) were studied. The experiments were carried out in a regime of high laser energy densities: 25, 48, and 50 J/cm2. The energy absorbed from the laser beam was partially converted to thermal energy and the effects of the TiN coating thickness on the morphological changes were considered. The morphological features and processes that accompany the interaction can be summarized as follows: (i) exfoliation of the TiN coating in the central zone of the irradiated area (for coating thickness of 1 μm) or appearance of grainy structure (for coating thicknesses 3 and 10 μm); (ii) appearance of hydrodynamic changes in the surrounding peripheral zone; and (iii) appearance of plasma in front of the target during sample irradiation. The text was submitted by the authors in English.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号