首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   6篇
化学   47篇
晶体学   1篇
力学   1篇
数学   5篇
物理学   38篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   6篇
  2012年   9篇
  2011年   12篇
  2010年   13篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  1988年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有92条查询结果,搜索用时 46 毫秒
1.
A family of fluorinated gemini surfactants derived from perfluoropinacol has been synthesized as novel 19F magnetic resonance imaging (19F MRI) agents. These fluorinated surfactants with 12 symmetric fluorine atoms and one singlet 19F MR peak can be conveniently prepared from perfluoropinacol and oligo(ethylene glycols) on multi-gram scales. Solubility, hydrophilicity (log P), and critical micelle concentration (CMC) measurements of these fluorinated surfactants indicated that high aqueous solubility can be achieved by introducing oligo(ethylene glycols) with appropriate length into perfluoropinacol, i.e., manipulating the fluorine content (F%). One of these fluorinated surfactants with high aqueous solubility and excellent 19F MR properties has been identified by 19F MRI phantom experiments as a promising 19F MRI agent.  相似文献   
2.
3.
Introduction of defects and nitrogen doping are two of the most pursued methods to tailor the properties of graphene for better suitability to applications such as catalysis and energy conversion. Doping nitrogen atoms at defect sites of graphene and codoping them along with boron atoms can further increase the efficiency of such systems due to better stability of nitrogen at defect sites and stabilization provided by B?N bonding. Systematic exploration of the possible doping/codoping configurations reflecting defect regions of graphene presents a prevalent doping site for nitrogen‐rich BN clusters and they are also highly suitable for modulating (0.2–0.9 eV) the band gap of defect graphene. Such codoped systems perform significantly better than the platinum surface, undoped defect graphene, and the single nitrogen or boron atom doped defect graphene system for dioxygen adsorption. Significant stretching of the O?O bond indicates a lowering of the bond breakage barrier, which is advantageous for applications in the oxygen reduction reaction.  相似文献   
4.
Transparent and highly conducting thin films of cadmium oxide (CdO) with titanium doping were synthesized by using radio frequency magnetron sputtering technique. The thin films were deposited on glass and silicon substrates with different percentages of titanium at a fixed substrate temperature 473 K and a fixed pressure of 0.1 mbar in Ar atmosphere. The deposited films were characterized by studying their crystallographic structure, optical and electrical properties. X-ray diffractometer, atomic force microscope, UV–Vis–NIR spectrophotometer, and X-ray photoelectron spectrophotometer were used for different characterizations. All the films have a rock-salt structure. A systematic increase in the optical bandgap was found for the CdO thin films with Ti doping, so that it can be considered as a candidate material for different optoelectronic device applications. Electrical conductivity was also found to increase with Ti doping concentration.  相似文献   
5.
A mesophilic bacterial culture producing a novel thermostable alkaline lipase was isolated from oil rich soil sample and identified as Bacillus subtilis EH 37. The lipase was partially purified by ammonium sulfate precipitation and hydrophobic interaction chromatography with 17.8-fold purification and 41.9 U/ml specific activity. The partially purified enzyme exhibited maximum activity at pH 8.0 and at 60 °C. It retained 100% of activity at 50 °C and 60 °C for 60 min. The presence of Ca+2, Mg+2, and Zn2+ exhibited stimulatory effect on lipase activity, whereas Fe+3 and Co+2 reduced its activity. The enzyme retained more than 80% of its initial activity upon exposure to organic solvents, exhibited 107% and 115% activity in the presence of 15% isopropyl alcohol and 30% n-hexane, respectively. The EH 37 lipase also proved to be an efficient catalyst in synthesis of ethyl caprylate in organic solvent, thus providing a concept of application of B. subtilis lipase in non-aqueous catalysis.  相似文献   
6.
7.
A simple biological method for the synthesis of gold nanoparticles (AuNPs) using Cassia auriculata aqueous leaf extract has been carried out in the present study. The reduction of auric chloride led to the formation of AuNPs within 10 min at room temperature (28°C), suggesting a higher reaction rate than chemical methods involved in the synthesis. The size, shape and elemental analysis were carried out using X-ray diffraction, TEM, SEM-EDAX, FT-IR and visible absorption spectroscopy. Stable, triangular and spherical crystalline AuNPs with well-defined dimensions of average size of 15-25 nm were synthesized using C. auriculata. Effect of pH was also studied to check the stability of AuNPs. The main aim of the investigation is to synthesize AuNPs using antidiabetic potent medicinal plant. The stabilizing and reducing molecules of nanoparticles may promote anti-hyperglycemic if tested further.  相似文献   
8.
Thin films of p-type transparent conducting CuAlO2 have been synthesized through reactive radio frequency magnetron sputtering on silicon and glass substrates at substrate temperature 300°C. Reactive sputtering of a target fabricated from Cu and Al powder (1:1.5) was performed in Ar+O2 atmosphere. The deposition parameters were optimized to obtain phase pure, good quality CuAlO2 thin films. The films were characterized by studying their structural, morphological, optical and electrical properties.  相似文献   
9.
Calbindin D9k is a member of the S100 subfamily of EF-hand calcium binding proteins, and has served as an important model system for biophysical studies. The fast timescale dynamics of the calcium-free (apo) state is characterized using molecular dynamics simulations. Order parameters for the backbone NH bond vectors are determined from the simulations and compared with experimentally derived values, with a focus on the dynamics of calcium-binding site I. There is a significant discrepancy between simulated and experimental order parameters for site I residues in the case of no ion bound in site I. However, it was found in the simulations that a Na+ ion can bind in site I, and the resulting order parameters determined from the simulations are in excellent agreement with experiment. Comparisons are made to X-ray structures of other S100 family members in which Na+ ions were observed or suggested to be bound in site I. © 2019 Wiley Periodicals, Inc.  相似文献   
10.
Rod-shaped 5 wt.% copper-doped ZnO (ZnO:Cu2+) ferromagnetic nanoparticles (NPs), prepared by hydrothermal method, were dispersed in ferroelectric liquid crystal (FLC) named Felix 17/100. The effect of ferromagnetic NPs on the physical properties of FLC material (Felix 17/100) has been investigated by dielectric, electro-optical and polarising optical microscopic methods. A noteworthy time-dependent memory has been observed in the NPs-dispersed FLC composite attributed to the coupling of magnetic field associated to NPs with the director orientation of FLC. Improvement in spontaneous polarisation and dielectric susceptibility of FLC material has been ensued with the addition of ferromagnetic NPs. Faster electro-optic response, at lower applied voltage, has also been observed in NPs-dispersed FLC composite. These changes are accredited to the magneto-electric dipolar coupling existing due to the interactions between magnetic-dipole and electric-dipole moments of magnetic NPs and FLC material, respectively. The formation of periodic domains capable to show memory effect has been observed in composite. The observed time-dependent memory was confirmed by dielectric and electro-optical methods. FLC material enriched with the properties of ferromagnetic NPs can be utilised in advanced multifunctional optical devices, time-dependent memory-based security devices and computational purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号