首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   3篇
化学   125篇
晶体学   1篇
力学   1篇
物理学   44篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   4篇
  2011年   15篇
  2010年   2篇
  2009年   3篇
  2008年   12篇
  2007年   17篇
  2006年   10篇
  2005年   8篇
  2004年   10篇
  2003年   8篇
  2002年   10篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1990年   1篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   4篇
  1969年   1篇
  1968年   3篇
排序方式: 共有171条查询结果,搜索用时 31 毫秒
1.
Recent progresses of molecular imprinting in metal oxide matrices were summarized. Application of the surface sol-gel process to mixtures of organic carboxylic acids and titanium alkoxide provides ultrathin layers of titania gel (10-20 nm thick), in which molecule-sized cavities are kept intact upon removal of the organic templates. The imprinted cavity reflects the structural and functional features of the template molecule, and the enantioselective imprinting of dipeptide isomers is observed. Robustness and flexibility of the ultrathin titania layer is demonstrated by the formation of interconnected titania hollow structures. Possible practical applications and unsolved problems of this technique are discussed.  相似文献   
2.
Synthetic, structural, spectroscopic, and kinetic studies have been carried out on the Pd(II) complexes of new 2N1O-donor ligands containing a pendent indole, 3-(N-2-pyridylmethyl-N-2-hydroxy-5-methoxybenzylamino)ethylindole (HMeO-iepp), 3-(N-2-pyridylmethyl-N-2-hydroxy-5-nitrobenzylamino)ethylindole (HNO2-iepp), and (N-2-pyridylmethyl-3-indolylethylamino)acetic acid (Hiepc) (H denotes a dissociable proton). [Pd(MeO-iepp)Cl] (2), [Pd(NO2-iepp)Cl] (3), and [Pd(iepc)Cl] (4) were prepared and revealed by X-ray analysis to have a pyridine nitrogen, an amine nitrogen, a phenolate or carboxylate oxygen, and a chloride ion in the coordination plane. UV absorption and 1H NMR spectral changes indicated that all the complexes could be converted to the indole-binding complexes where the O donor was replaced by the indole C2 atom by cyclopalladation in DMSO or DMF in the temperature range of 40-60 degrees C. Formation of the indole-binding complex species obeyed the first-order kinetics, from which the activation parameters were estimated. The formation rate was dependent on the properties of the O-donor group, a lower pKa value of its conjugate acid causing faster conversion to the indole-binding species in the order 2 (methoxyphenolate) < 3 (nitrophenolate) < 4 (carboxylate). On the other hand, the ratio of the indole-binding complex to the O-donor complex as a result of the conversion was greater for the complexes with a higher pKa value of the ligand OH group, the order being 2 > 3 > 4.  相似文献   
3.
The structure of the 1:2 copolymer of divinyl ether and maleic anhydride was investigated by 13C-NMR spectroscopy. The polymer contains the bicyclic unit composed of one molecule of each monomer and the maleic anhydride unit. The carbon chemical shift for these units was calculated on the basis of the chemical shift of many model compounds. The major peaks of the cyclopolymer prepared in chloroform were consistent with the presence of the symmetrical bicyclic unit with cis junction and the trans monocyclic anhydride unit. The carbonyl carbon spectrum for the copolymer obtained in a mixed solvent of acetone and CS2 suggested the predominant formation of the unsymmetrical bicyclic unit. The polymerization process was discussed on the basis of these results.  相似文献   
4.
The Pd(II) complexes of new 2N1O-donor ligands containing a pendent indole, 3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]ethylindole (Htbu-iepp), 1-methyl-3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]ethylindole (Htbu-miepp), 3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]methylindole (Htbu-impp), and 3-(N-2-pyridylmethyl-N-4-hydroxybenzylamino)ethylindole (Hp-iepp) (H denotes a dissociable proton), were synthesized, and the structures of [Pd(tbu-iepp)Cl] (1a), [Pd(tbu-iepp-c)Cl] (1b), [Pd(tbu-miepp)Cl] (3), and [Pd(p-iepp-c)Cl] (4) (tbu-iepp-c and p-iepp-c denote tbu-iepp and p-iepp bound to Pd(II) through a carbon atom, respectively) were determined by X-ray analysis. Complexes 1a prepared in CH(2)Cl(2)/CH(3)CN and 3 prepared in CH(3)CN have a pyridine nitrogen, an amine nitrogen, a phenolate oxygen, and a chloride ion in the coordination plane. Complex 1b prepared in CH(3)CN has the same composition as 1a and was revealed to have the C2 atom of the indole ring bound to Pd(II) with the Pd(II)-C2 distance of 1.973(2) A. The same Pd(II)-indole C2 bonding was revealed for 4. Interconversion between 1a and 1b was observed for their solutions, the equilibrium being dependent on the solvent used. Reaction of 1b and 4 with 1 equiv of Ce(IV) in DMF gave the corresponding one-electron-oxidized species, which exhibited an ESR signal at g = 2.004 and an absorption peak at approximately 550 nm, indicating the formation of the Pd(II)-indole pi-cation radical species. The half-life, t(1/2), of the indole radical species at room temperature was calculated to be 20 s (k(obs) = 3.5 x 10(-)(2) s(-)(1)) for 1b. The cyclic voltammogram for 1b in DMF gave two irreversible oxidation peaks at E(pa) = 0.68 and 0.80 V (vs Ag/AgCl), which were ascribed to the oxidation processes of the coordinated indole and phenolate moieties, respectively.  相似文献   
5.
Composites of platinum nanoparticles and amorphous carbon films have been facilely fabricated by catalyzed carbonization of cellulose fibers.  相似文献   
6.
A stereochemical scheme of propagation was proposed for polymerizations of vinyl and related monomers by Friedel-Crafts catalysts. For the cationic propagation proceeding via the simple carbonium ion pair, the following two factors were considered to be of primary importance in determining the steric course of propagation: (1) the conformation of the last two units of the propagating polymer segment and the direction of approach of the incoming monomer; (2) the tightness of the growing ion pair. Thus, the front-side (less hindered site) attack to the carbonium ion gives rise to a syndiotactic placement and the back-side attack an isotactic placement. The present model can satisfactorily explain the effects of substituents, catalysts, polymerization media, and polymerization temperature on the steric structure of polymers in cationic polymerization of vinyl ethers. Extension of the scheme to polymerization of the β-substituted vinyl ethers in nonpolar solvents predicts formation of the diisotactic structures consistent with the experimental result. The influences of the polymerization condition on the steric structure of polymer were studied for cationic polymerizations of α-methylstyrene at low temperatures. Highly syndiotactic polymers were obtained for homogeneous reactions in toluene-rich media. The isotactic unit increased by increasing the content of methylcyclohexane in the solvent mixture. The effect of catalysts, though insignificant in toluene-rich media, was clearly noted in methylcyclohexane-rich media, less active catalysts (e.g., SnCl4) yielding higher amounts of the isotactic unit than more active catalysts (e.g., AlCl3). These results can be readily accommodated in the present model.  相似文献   
7.
Amylose was etherified with 1-bromopropane in DMSO. The degree of substitution (DS) was varied by altering the feed ratio of 1-bromopropane. The structures of the products were characterized by IR and 1H-NMR spectroscopy. When the molar feed ratio of 1-bromopropane to hydroxyl groups of amylose was beyond 7.5, the hydroxyl groups were completely substituted with propyl ether groups. The etherified amylose with DS 1.9 showed a glass transition temperature (Tg), and that with DS 2.3 or 3.0 showed both Tg and melting temperature (Tm) (DS 3.0 means complete substitution). The etherification imparted melt processability and solubility in nonpolar organic solvent to amylose.  相似文献   
8.
The regioselectivity (r.s.) and enantiospecificity (e.s.) of the substitution reactions of secondary propargylic alcohol derivatives using reagents derived from ArMgBr and Cu salts were studied. First, the picolinate, 3-methylpicolinate, and diethylphosphonate derivatives of Ph(CH2)2CH(OH)C≡CTMS were reacted with PhMgBr/CuCN in ratios of 2.5:2.7–2.5:0.25. The use of 2.5:0.25 ratio in THF/DME (6:1) at 0 °C for 1 h afforded the α-substitution product from the phosphate with ≥98 % r.s. and 99 % e.s. CuBr⋅Me2S gave similar selectivity. The reaction system was then applied to phosphates derived from R1CH(OH)C≡CR2 and ArMgBr to obtain synthetically sufficient r.s. and e.s. values with R2=TMS, Ph, whereas iPr was borderline in terms of size as an R1 substituent. The presence of a substituent at the o-position of Ar marginally affected the selectivity. We also found that the use of PhMgBr/Cu(acac)2 in a 2:1 ratio in THF produced the γ-substitution products (allenes) with high r.s. and e.s.  相似文献   
9.
Polymerization with many triphenylmethyl salts was conducted for α-methylstyrene, isobutyl vinyl ether, t-butyl vinyl ether, and spiro[2,4]hepta-4,6-diene (SHD). The variation of polymer structure (the isotactic unit content for the first three monomer systems and the amount of the 1,4-addition structure for SHD) showed fairly simple correlations with the counteranion size. The results can be interpreted in terms of the tightness of the propagating ion pair within the framework of a theory of the cationic propagation which had been proposed. When the counteranion radius was greater than 3.5 Å, the counteranion exerts a parallel influence on the tightness of the growing ion pair without regard to the monomer structure. However, in the case of smaller counterions, the tightness appears to be determined by the relative sizes of counteranion and monomer. The penta-coordinated counteranions gave rise to the polymer structure which would arise from tighter ion pairs than expected from their sizes alone. The polymer structure was also affected by the initiator concentration in these cases. These results are attributed to peculiar characteristics of penta-coordinated anions.  相似文献   
10.
This report describes that a regular positive electrospray ionization mass spectrometry (MS) analysis of terpendoles often causes unexpected oxygen additions to form [M + H + O]+ and [M + H + 2O]+, which might be a troublesome in the characterization of new natural analogues. The intensities of [M + H + O]+ and [M + H + 2O]+ among terpendoles were unpredictable and fluctuated largely. Simple electrochemical oxidation in electrospray ionization was insufficient to explain the phenomenon. So we studied factors to form [M + H + O]+ and [M + H + 2O]+ using terpendole E and natural terpendoles together with some model indole alkaloids. Similar oxygen addition was observed for 1,2,3,4‐tetrahydrocyclopent[b]indole, which is corresponding to the substructure of terpendole E. In tandem MS experiments, a major fragment ion at m/z 130 from protonated terpendole E was assigned to the substructure containing indole. When the [M + H + O]+ was selected as a precursor ion, the ion shifted to m/z 146. The same 16 Da shift of fragments was also observed for 1,2,3,4‐tetrahydrocyclopent[b]indole, indicating that the oxygen addition of terpendole E took place at the indole portion. However, the oxygen addition was absent for some terpendoles, even whose structure resembles terpendole E. The breakdown curves characterized the tandem MS features of terpendoles. Preferential dissociation into m/z 130 suggested the protonation tendency at the indole site. Terpendoles that are preferentially protonated at indole tend to form oxygen addition peaks, suggesting that the protonation feature contributes to the oxygen additions in some degrees. © 2014 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号