首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
化学   15篇
晶体学   1篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
  1988年   1篇
排序方式: 共有16条查询结果,搜索用时 17 毫秒
1.
The crystal structures, solid-state infrared patterns, and thermal properties of two polymorphs of 4-nitrosalicylanilide are presented. In both polymorphs, intramolecular hydrogen bonds are found between the phenol oxygen and the amide proton, and intermolecular hydrogen bonds are found between the amide carbonyl oxygen and the phenol proton. These hydrogen bond patterns are compared to those found in other known salicylamide derivatives and an analysis is given of the factors contributing to preferences for intra- or intermolecular hydrogen bonds in these structures. Crystal data: polymorph, orthorhombic,Pbca,a=11.003(4),b=27.959(7),c=7.622(5) Å,Z=4,V=2345(3) Å3, andR=0.038 (1351 reflections); polymorph, monoclinic,P21/a,a=28.36(1),b=11.64(1),c=7.293(8) Å,=90.68(6)°,Z=8,V=2408 Å3, andR=0.043 (2425 reflections).  相似文献   
2.
The contributions of molecular and fragment ions toward the disparate self-chemical ionization (SCI) of alpha-pinene and camphene isomers were investigated. A kinetic model was constructed to predict the SCI outcomes for these two C(10)H(16) isomers. A major portion of the camphene molecular ions (isolated 500 ms after the 10 ms EI event at 24 eV) unimolecularly dissociated within 200 s of the ionization event. Conversely, under similar experimental conditions, the alpha-pinene molecular ions as well as the major fragment ions of alpha-pinene and camphene showed no unimolecular dissociation. The alpha-pinene and camphene molecular ions yielded product ions through two different reaction mechanisms (direct charge-transfer {CT} and indirect proton transfer {PT}). The isolated terpene fragment ions at m/z 93 and 121 reacted with their respective neutrals to produce [M + H](+). Proton affinity (PA) bracketing experiments, PA additivity schemes, and alkene PA versus adiabatic ionization energy (IE) linear correlation indicated that the PAs of camphene and alpha-pinene were comparable ( approximately 210 +/- 2 kcal x mol(-1)). The observed [M + H](+) SCI terpene ions were mainly the products of various fragment ion reactions.  相似文献   
3.
4.
It is shown that y-type ions, after losing C-terminal H2O or NH3, can lose an internal backbone carbonyl (CO) from different peptide positions and yield structurally different product fragment ions upon collision-induced dissociation (CID). Such CO losses from internal peptide backbones of y-fragment ions are not unique to a single peptide and were observed in four of five model peptides studied herein. Experimental details on examples of CO losses from y-type fragment ions for an isotopically labeled AAAAHAA-NH2 heptapeptide and des-acetylated-α-melanocyte-stimulating hormone (dα-MSH) (SYSMEHFRWGKPV-NH2) are reported. Results from isotope labeling, tandem mass spectrometry (MSn), and ion mobility-mass spectrometry (IM-MS) confirm that CO losses from different amino acids of m/z-isolated y-type ions yield structurally different ions. It is shown that losses of internal backbone carbonyls (as CID products of m/z-isolated y-type ions) are among intermediate steps towards formation of rearranged or permutated product fragment ions. Possible mechanisms for generation of the observed sequence-scrambled a-“like” ions, as intermediates in sequence-scrambling pathways of y-type ions, are proposed and discussed. ?   相似文献   
5.
Presence of unresolved ion mobility (IM) profiles limits the efficient utilization of IM mass spectrometry (IM-MS) systems for isomer differentiation. Here, we introduce an automated ion mobility deconvolution (AIMD) computer software for streamlined deconvolution of overlapped IM-MS profiles. AIMD is based on a previously reported post-IM/collision-induced dissociation (CID) deconvolution approach [J. Am. Soc. Mass Spectrom. 23, 1873 (2012)] and, unlike the previously reported manual approach, it does not require resampling of post-IM/CID data. A novel data preprocessing approach is utilized to improve the accuracy and efficiency of the deconvolution process. Results from AIMD analysis of overlapped IM profiles of data from (1) Waters Synapt G1 for a binary mixture of isomeric peptides (amino acid sequences: GRGDS and SDGRG) and (2) Waters Synapt G2-S for a binary mixture of isomeric trisaccharides (raffinose and isomaltotriose) are presented. Graphical Abstract
?  相似文献   
6.
Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting “pure” IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810–1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) “shift factors” to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.8 Å2, 295.1 Å2, 296.8 Å2, and 300.1 Å2; all four of these CCS values were within 1.5% of independently measured DTIM-MS values.  相似文献   
7.
Radio‐frequency ionization (RFI) is a novel ionization method coupled to mass spectrometry (MS) for analysis of semi‐volatile and volatile organic compounds (VOCs). Despite the demonstrated capabilities of RFI MS for VOC analysis in both positive‐ and negative‐ion modes, mechanism of RFI is not completely understood. Improved understanding of the ion generation process in RFI should expand its utility in MS. Here, we studied the possibility of electron emission in RFI using both direct charged particle current measurements and indirect electron detection in a 9.4‐T Fourier transform‐ion cyclotron resonance (FT‐ICR) mass spectrometer. We show that RF‐generated electrons can be trapped in the ICR cell and, subsequently, reacted with neutral hexafluorobenzene (C6F6) molecules to generate C6F6●?. Intensity of observed C6F6●? species correlated with the number of trapped electrons and decreased as a function of electron quenching period. We also measured the electron attachment rate constant of hexafluorobenzene using a post‐RF electron trapping experiment. Measured electron attachment rate constant of hexafluorobenzene (1.19 (±0.53) × 10?9 cm3 molecule?1 s?1) for post‐RF FT‐ICR MS agreed with the previously reported value (1.60 (±0.30) × 10?9 cm3 molecule?1 s?1) from low‐pressure ICR MS measurements. Experimental results from direct and indirect electron measurements suggest that RFI process involves RF‐generated electrons under ultrahigh vacuum conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
Electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with H/D exchange reactions was utilized to explore the existence of different b5+ and b4+ fragment ion conformers/isomers of hexapeptide WHWLQL in the gas phase. Distinct H/D exchange trends for protonated WHWLQL ([M + H]+) and its b5+ and b4+ fragment ions (with ND3) were observed. Isolated 12Call isotopomers of both b5+ and b4+ fragment ions yielded bimodal distributions of H/D exchanged product ions. The H/D exchange reaction kinetics also confirmed that b5+ and b4+ fragment ions exist as combination of slow-exchanging (“s”) and fast-exchanging (“f”) species. The calculated rate constant for the first labile hydrogen exchange of [M + H]+ (k[M + H] + = 3.80 ± 0.7 × 10−10 cm3 mol−1 s−1) was ∼30 and ∼5 times greater than those for the “s” and “f” species of b5+, respectively. Data from H/D exchange of isolated “s” species at longer ND3 reaction times confirmed the existence of different conformers or isomers for b5+ fragment ions. The sustained off-resonance irradiation collision-activated dissociation (SORI-CAD) of WHWLQL combined with the H/D exchange reactions indicate that “s” and “f” species of b5+ and b4+ fragment ions can be produced in the ICR cell as well as the ESI source. The significance of these observations for detailed understanding of protein sequencing and ion fragmentation pathways is discussed.  相似文献   
9.
Sequence scrambling from y-type fragment ions has not been previously reported. In a study designed to probe structural variations among b-type fragment ions, it was noted that y fragment ions might also yield sequence-scrambled ions. In this study, we examined the possibility and extent of sequence-scrambled fragment ion generation from collision-induced dissociation (CID) of y-type ions from four peptides (all containing basic residues near the C-terminus) including: AAAAHAA-NH2 (where “A” denotes carbon thirteen (13C1) isotope on the alanine carbonyl group), des-acetylated-α-melanocyte (SYSMEHFRWGKPV-NH2), angiotensin II antipeptide (EGVYVHPV), and glu-fibrinopeptide b (EGVNDNEEGFFSAR). We investigated fragmentation patterns of 32 y-type fragment ions, including y fragment ions with different charge states (+1 to +3) and sizes (3 to 12 amino acids). Sequence-scrambled fragment ions were observed from ~50 % (16 out of 32) of the studied y-type ions. However, observed sequence-scrambled ions had low relative intensities from ~0.1 % to a maximum of ~12 %. We present and discuss potential mechanisms for generation of sequence-scrambled fragment ions. To the best of our knowledge, results on y fragment dissociation presented here provide the first experimental evidence for generation of sequence-scrambled fragments from CID of y ions through intermediate cyclic “b-type” ions.
Figure
?  相似文献   
10.
A multimodal workflow for mass spectrometry imaging was developed that combines MALDI imaging with protein identification and quantification by liquid chromatography tandem mass spectrometry (LC‐MS/MS). Thin tissue sections were analyzed by MALDI imaging, and the regions of interest (ROI) were identified using a smoothing and edge detection procedure. A midinfrared laser at 3‐μm wavelength was used to remove the ROI from the brain tissue section after MALDI mass spectrometry imaging (MALDI MSI). The captured material was processed using a single‐pot solid‐phase‐enhanced sample preparation (SP3) method and analyzed by LC‐MS/MS using ion mobility (IM) enhanced data independent acquisition (DIA) to identify and quantify proteins; more than 600 proteins were identified. Using a modified database that included isoform and the post‐translational modifications chain, loss of the initial methionine, and acetylation, 14 MALDI MSI peaks were identified. Comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the identified proteins was achieved through an evolutionary relationships classification system.  相似文献   
1 [2] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号