首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   10篇
化学   193篇
晶体学   8篇
力学   3篇
数学   9篇
物理学   47篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   6篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   9篇
  2013年   14篇
  2012年   13篇
  2011年   28篇
  2010年   8篇
  2009年   10篇
  2008年   16篇
  2007年   14篇
  2006年   22篇
  2005年   17篇
  2004年   9篇
  2003年   12篇
  2002年   5篇
  2001年   9篇
  2000年   3篇
  1999年   6篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有260条查询结果,搜索用时 31 毫秒
1.
2.
The Diels-Alder reactions of a cardiac glycoside, proscillaridin (1), with some dienophiles were investigated. The reaction of 1 with alkenes such as methyl vinyl ketone and methyl acrylate afforded 3-oxo-2-oxabicyclo[2.2.2]oct-7-enes (2-5) and para-substituted benzene derivatives (6 and 7), while 1 reacted with alkynes (3-butyn-2-one, methyl propiolate) to yield para- or meta-substituted benzene derivatives (6-9). The biological activities of the resulting derivatives were evaluated by the use of isolated guinea-pig papillary muscle preparations and Na+,K(+)-adenosine triphosphatase (ATPase) preparation from dog kidney. Among the proscillaridin derivatives, compounds 4 and 7 moderately inhibited Na+,K(+)-ATPase activity. Furthermore, the concentration range of 7 over which its positive inotropic effect on guinea-pig papillary muscle preparations, increased from 5% to 95% of maximum was broader than that of 1, i.e., concentration dependency was maintained over a greater range of concentration.  相似文献   
3.
We have prepared a pillared layer magnetic material containing a noncoordinated aromatic molecule, [{MnII(pyrimidine)(H2O)}2{MnII(H2O)2}{WV(CN)8}2](pyrimidine)2.2H2O. This compound has one-dimensional channels (6.2 x 2.1 A) that are occupied by noncoordinated pyrimidine. The magnetization versus temperature plots showed the magnetic phased transition temperature (TC) was 47 K. The magnetization versus external magnetic field plots showed that the saturation magnetization (MS) value was 13.0 muB at 2 K. This MS value indicates that an antiferromagnetic interaction operates between the WV (S = 1/2) and MnII (S = 5/2) ions. The magnetic hysteresis loop showed that the coercive field (HC) was 17 G at 2 K.  相似文献   
4.
A supersonic jet instrument for fluorescence spectrometry is described. It consists of a high-temperature free expansion nozzle for continuous sample introduction and a vacuum chamber equipped with a high-speed pumping system. Rotationally cooled spectra obtained with the supersonic jet are compared with gas-phase spectra measured at high temperature for perylene and benzo[a]pyrene molecules. Each component of the unresolved band structure in the high-temperature spectra was found to be composed of a rotational congestion of several vibrational bands. For a 1:1 mixture of perylene and benzo[a]pyrene, selective detection is possible by using supersonic jet spectrometry. The detection limit for perylene is 100 ng. The advantage of this technique over other low-temperature spectrometric methods based on Shpol'skii and matrix isolation effects are discussed.  相似文献   
5.
The reaction of bis(2-bromoethyl)selenium dibromide (1a) with 1,5-hexadiene (2) in methanol or ethanol affords 2,5-bis(alkoxymethyl)tetrahydroselenophene-1,1-dibromides (R = CH3 (3b), R = C2H5 (3c)) via 2,5-bis(bromomethyl)tetrahydroselenophene-1,1-dibromide (3a). The reaction of 1a with 2 in 1-propanol, 2-methyl-1-propanol or 1-butanol in the presence of sodium carbonate gave 2,5-bis(alkoxymethyl)tetrahydroselenophene (R = C3H7 (4a), R = (CH3)2CHCH2 (4b) and R = C4H9 (4c)) via 3a. The ratios of the trans and cis isomers of 3a–3c are 3:2. In addition, the structure of trans-2,5-bis(methoxymethyl)tetrahydroselenophene-1,1-dibromide (trans-3b) was determined by X-ray crystallography.  相似文献   
6.
The effect of confinement on the phase changes and dynamics of acetonitrile in mesoporous MCM-41 was studied by use of adsorption, FT-IR, DSC, and quasi-elastic neutron scattering (QENS) measurements. Acetonitrile molecules in a monolayer interact strongly with surface hydroxyls to be registered and perturb the triple bond in the C[triple bond]N group. Adsorbed molecules above the monolayer through to the central part of the cylindrical pores are capillary condensed molecules (cc-acetonitrile), but they do not show the hysteresis loop in adsorption-desorption isotherms, i.e., second order capillary condensation. FT-IR measurements indicated that the condensed phase is very similar to the bulk liquid. The cc-acetonitrile freezes at temperatures that depend on the pore size of the MCM-41 down to 29.1 A (C14), below which it is not frozen. In addition, phase changes between alpha-type and beta-type acetonitriles were observed below the melting points. Application of the Gibbs-Thomson equation, assuming the unfrozen layer thickness to be 0.7 nm, gave the interface free energy differences between the interfaces, i.e., Deltagamma(l/alpha) = 22.4 mJ m(-2) for the liquid/pore surface (ps) and alpha-type/ps, and Deltagamma(alpha/beta) = 3.17 mJ m(-2) for alpha-type/ps and beta-type/ps, respectively. QENS experiments substantiate the differing behaviors of monolayer acetonitrile and cc-acetonitrile. The monolayer acetonitrile molecules are anchored so as not to translate. The two Lorentzian analysis of QENS spectra for cc-acetonitriles showed translational motion but markedly slowed. However, the activation energy for cc-acetonitrile in MCM-41 (C18) is 7.0 kJ mol(-1) compared to the bulk value of 12.7 kJ mol(-1). The relaxation times for tumbling rotational diffusion of cc-acetonitrile are similar to bulk values.  相似文献   
7.
Reactions of [Ni(tren)(H(2)O)(2)]X(2) (tren = tris(2-aminoethyl)amine; X = Cl (1a), Br (1b); X(2) = SO(4) (1c)) with mannose-type aldoses, having a 2,3-cis configuration (D-mannose and L-rhamnose), afforded {bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine}nickel(II) complexes, [Ni(N,N'-(aldosyl)(2)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (2a), Br (2b), X(2) = SO(4) (2c); aldosyl = L-rhamnosyl, X(2) = SO(4) (3c)). The structure of 1c was confirmed by X-ray crystallography to be a mononuclear [Ni(II)N(4)O(2)] complex with the tren acting as a tetradentate ligand (1c.2H(2)O: orthorhombic, Pbca, a = 15.988(2) ?, b = 18.826(4) ?, c = 10.359(4) ?, V = 3118 ?(3), Z = 8, R = 0.047, and R(w) = 0.042). Complexes 2a,c and 3c were characterized by X-ray analyses to have a mononuclear octahedral Ni(II) structure ligated by a hexadentate N-glycoside ligand, bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine (2a.CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 16.005(3) ?, b = 20.095(4) ?, c = 8.361(1) ?, V = 2689 ?(3), Z = 4, R = 0.040, and R(w) = 0.027. 2c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.93(2) ?, b = 21.823(8) ?, c = 9.746(2) ?, V = 3176 ?(3), Z = 4, R = 0.075, and R(w) = 0.080. 3c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.560(4) ?, b = 21.694(5) ?, c = 9.786(2) ?, V = 3091 ?(3), Z = 4, R = 0.072, and R(w) = 0.079). The sugar part of the complex involves novel intramolecular sugar-sugar hydrogen bondings around the metal center. The similar reaction with D-glucose, D-glucosamine, and D-galactosamine, having a 2,3-trans configuration, resulted in the formation of a mono(sugar) complex, [Ni(N-(aldosyl)-tren)(H(2)O)(2)]Cl(2) (aldosyl = D-glucosyl (4b), 2-amino-2-deoxy-D-glucosyl (5a), and 2-amino-2-deoxy-D-galactosyl (5b)), instead of a bis(sugar) complex. The hydrogen bondings between the sugar moieties as observed in 2 and 3 should be responsible for the assembly of two sugar molecules on the metal center. Reactions of tris(N-aldosyl-2-aminoethyl)amine with nickel(II) salts gave the tris(sugar) complexes, [Ni(N,N',N"-(aldosyl)(3)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (6a), Br (6b); L-rhamnosyl, X = Cl (7a), Br (7b); D-glucosyl, X = Cl (9); maltosyl, X = Br (10); and melibiosyl, X = Br (11)), which were assumed to have a shuttle-type C(3) symmetrical structure with Delta helical configuration for D-type aldoses on the basis of circular dichroism and (13)C NMR spectra. When tris(N-rhamnosyl)-tren was reacted with NiSO(4).6H(2)O at low temperature, a labile neutral complex, [Ni(N,N',N"-(L-rhamnosyl)(3)-tren)(SO(4))] (8), was successfully isolated and characterized by X-ray crystallography, in which three sugar moieties are anchored only at the N atom of the C-1 position (8.3CH(3)OH.H(2)O: orthorhombic, P2(1)2(1)2(1), a = 16.035(4) ?, b = 16.670(7) ?, c = 15.38(1) ?, V = 4111 ?(3), Z = 4, R = 0.084, and R(w) = 0.068). Complex 8 could be regarded as an intermediate species toward the C(3) symmetrical tris(sugar) complexes 7, and in fact, it was readily transformed to 7b by an action of BaBr(2).  相似文献   
8.
Photoelectron angular distributions in the laboratory frame (LF-PADs) from the A((2)sigma(+)) state of NO molecule were measured by femtosecond time-resolved photoelectron imaging with (1 + 1(')) resonance enhanced multiphoton ionization via the A state. High-precision measurements of the anisotropy parameters of LF-PADs were performed for the photoelectron kinetic energy from 0.03 to 1.05 eV as a function of the pump-probe delay time. The revival feature of the rotational wave packet on the A state was clearly observed in the time dependence of the photoelectron anisotropy parameters. By approximating the phase shifts of the photoelectron partial waves by the quantum defects in the high-lying Rydberg states using the multichannel quantum defect theory, the energy-dependent photoionization transition dipole moments were determined, for the first time, from time-dependent LF-PADs measured by time-resolved photoelectron spectroscopy.  相似文献   
9.
The novel tetranuclear copper(II) complexes with alpha-d-glucose-1-phosphates, [Cu(4)(mu-OH)(alpha-d-Glc-1P)(2)(L)(4)(H(2)O)(2)](NO(3))(3) (L = bpy (1), phen (2)), were prepared and characterized by X-ray crystallography. Complex 1 was further transformed into the ATP stabilized tetracopper(II) complex of [Cu(4)(ATP)(2)(bpy)(4)] (4), where ATP is adenosine 5'-triphosphate.  相似文献   
10.
A series of the octapalladium chains supported by meso-Ph2PCH2P(Ph)CH2P(Ph)CH2PPh2 (meso-dpmppm) ligands, [Pd8(meso-dpmppm)4(L)2](BF4)4 (L=none ( 1 ), solvents: CH3CN ( 2 a ), dmf ( 2 b ), dmso ( 2 c ), RN≡C: R=Xyl ( 3 a ), Mes ( 3 b ), Dip ( 3 c ), tBu ( 3 d ), Cy ( 3 e ), CH3(CH2)7 ( 3 f ), CH3(CH2)11 ( 3 g ), CH3(CH2)17 ( 3 h )) and [Pd8(meso-dpmppm)4(X)2](BF4)2 (X=Cl ( 4 a ), N3 ( 4 b ), CN ( 4 c ), SCN ( 4 d )), were synthesized by using 2 a as a stable good precursor, and characterized by spectroscopic (IR, 1H and 31P NMR, UV-vis-NIR, ESI-MS) measurements and X-ray crystallographic analyses (for 1 , 2 a , b , 3 a , b , e , f , 4 a – d ). On the basis of DFT calculations on the X-ray determined structure of 2 b ( [2b-Pd8]4+ ) and the optimized models [Pd8(meso-Ph2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8Ph8]4+ ) and [Pd8(meso-H2PCH2P(H)CH2P(H)CH2PH2)4(CH3CN)2]4+ ( [Pd8H8]4+ ), with and without empirically calculating dispersion force stabilization energy (B3LYP-D3, B3LYP), the formation energy between the two Pd4 fragments is assumed to involve mainly noncovalent interactions (ca. −70 kcal/mol) with four sets of interligand C−H/π interactions and Pd⋅⋅⋅Pd metallophilic one, while electron shared covalent interactions are almost canceled out within the Pd8 chain. All the compounds isolated are stable in solution and exhibit characteristic absorption at ∼900 nm, which is assignable to a spin allowed HOMO to LUMO transition, and shows temperature dependent intensity change with variable absorption coefficients presumably due to coupling with some thermal vibrations. The structures and electronic states of the Pd8 chains are found finely tunable by varying the terminal capping ligands. In particular, theoretical calculations elucidated that the HOMO-LUMO energy gap is systematically related to the central Pd−Pd distance (2.7319(6)–2.7575(6) Å) by two ways with neutral ligands L ( 1 , 2 , 3 ) and with anionic ligands X ( 4 ), which are reflected on the NIR absorption energy of 867–954 nm. The isocyanide terminated Pd8 complexes ( 3 ) further reacted with excess of RNC (6 eq) to afford the Pd4 complexes, [Pd4(meso-dpmppm)2(RNC)2](BF4)2 ( 13 ), and the cyclic voltammograms of 2 a (L=CH3CN), 3 , and 13 (R=Xyl, Mes, tBu, Cy) demonstrated wide range redox behaviors from 2{Pd4}4+ to 2{Pd4}0 through 2{Pd4}2+↔{Pd8}4+, {Pd8}3+, and {Pd8}2+ strings. The oxidized complexes, [Pd4(meso-dpmppm)2(RNC)3](BF4)4 ( 16 ), were characterized by X-ray analyses, and the two-electron reduced chain of [Pd8(meso-dpmppm)4](BF4)2 ( 7 ) was analyzed by spectroscopic and electrochemical techniques and DFT calculations. Reactions of 2 a with 1 equiv. of aromatic linear bisisocyanide (BI) in CH2Cl2 deposited insoluble coordination polymers, {[Pd8(meso-dpmppm)4(BI)](BF4)4}n ( 5 ), and interestingly, they were soluble in acetonitrile, 31P{1H} and 1H DOSY NMR spectra as well as SAXS curves suggesting that the coordination polymers may exist in acetonitrile as dynamically 1D self-assembled coordination polymers comprising ca. 50 units of the Pd8 rod averaged within the timescale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号