首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   2篇
  2022年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Cellulose - We investigate the dissolution mechanism of cellulose using molecular dynamics simulations in both water and a mixture solvent consisting of water with Na $$^+$$ , OH $$^-$$...  相似文献   
2.

This review is the first part of a comprehensive review of hydrophobisation of lignocellulosic materials. The purpose of this review has been to compare physical hydrophobisation methods of lignocellulosic materials. We have compared molecular physical adsorption with plasma etching and grafting. Adsorption methods are facile and rely upon the simple mixing or coating of the substrate with the hydrophobing agent. However, none of the surfactant-based methods reviewed here reach contact angles above 90°, making them unsuitable for applications where a high degree of hydrophobisation is required. Nevertheless, surfactant based methods are well suited for compatibilising the lignocellulosic material with a hydrophobic matrix/polymer in cases where only a slight decrease in the hydrophilicity of the lignocellulosic substrate is required. On the other hand, wax- and lignin-based coatings can provide high hydrophobicity to the substrates. Plasma etching requires a more complex set-up but is relatively cheap. By physically etching the surface with or without the deposition of a hydrophobic coating, the material is rendered hydrophobic, reaching contact angles well above 120°. A major drawback of this method is the need for a plasma etching set-up, and some researchers co-deposit fluorine-based layers, which have a negative environmental impact. An alternative is plasma grafting, where single molecules are grafted on, initiated by radicals formed in the plasma. This method also requires a plasma set-up, but the vast majority of hydrophobic species can be grafted on. Examples include fatty acids, silanes and alkanes. Contact angles well above 110° are achieved by this method, and both fluorine and non-toxic species may be used for grafting.

Graphical abstract
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号