首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学   3篇
  2022年   1篇
  2016年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 265 毫秒
1
1.
The structural and storage and functional thermostabilization of endo-inulinase (EC 3.2.1.7) through semi-rational modification of surface accessible lysine residues by pyridoxal-5'-phosphate (PLP) and ascorbate reduction have been explored. Improved stability was observed on modifications in the absence or presence of inulin, which indicates storage or functional thermostabilization, respectively. Comparisons have been made between non-modified and modified enzyme by the determination of Tm as an indicator of structural stability, temperature-dependent half-lives (t1/2), energy barrier of the inactivation process, and thermodynamic parameters (ΔH, ΔG, and ΔS) in a storage thermostability approach. These parameters coincided well with the observed stabilization of the engineered enzyme. Moreover, relative activities with sucrose and inulin were determined for non-modified and modified endo-inulinases at different temperatures. A comparison of the sucrose-to-inulin ratios of the initial rate of hydrolysis as an indicator of substrate specificity revealed about twofold improvement in inulinase versus sucrose activity by enzyme modification. Molecular dynamics simulations and molecular docking approaches were employed to explain the observed structural and functional thermostabilization of endo-inulinase upon modification. We hypothesize the establishment of intramolecular interactions between the covalently attached PLP-Lys381 and Arg526 and Ser376 residues as a representative of modification-originated intramolecular contacts in the modified enzyme.  相似文献   
2.
Journal of Analytical Chemistry - In this study, an online solid-phase extraction-thermal desorption method coupled with gas chromatography-flame ionization detection was used to extract seven...  相似文献   
3.
A new monolithic coating based on vinylpyrrolidone‐ethylene glycol dimethacrylate polymer was introduced for stir bar sorptive extraction. The polymerization step was performed using different contents of monomer, cross‐linker and porogenic solvent, and the best formulation was selected. The quality of the prepared vinylpyrrolidone‐ethylene glycol dimethacrylate stir bars was satisfactory, demonstrating good repeatability within batch (relative standard deviation < 3.5%) and acceptable reproducibility between batches (relative standard deviation < 6.0%). The prepared stir bar was utilized in combination with ultrasound‐assisted liquid desorption, followed by high‐performance liquid chromatography with ultraviolet detection for the simultaneous determination of diazepam and nordazepam in human plasma samples. To optimize the extraction step, a three‐level, four‐factor, three‐block Box–Behnken design was applied. Under the optimum conditions, the analytical performance of the proposed method displayed excellent linear dynamic ranges for diazepam (36–1200 ng/mL) and nordazepam (25–1200 ng/mL), with correlation coefficients of 0.9986 and 0.9968 and detection limits of 12 and 10 ng/mL, respectively. The intra‐ and interday recovery ranged from 93 to 106%, and the relative standard deviations were less than 6%. Finally, the proposed method was successfully applied to the analysis of diazepam and nordazepam at their therapeutic levels in human plasma. The novelty of this study is the improved polarity of the stir bar coating and its application for the simultaneous extraction of diazepam and its active metabolite, nordazepam in human plasma sample. The method was more rapid than previously reported stir bar sorptive extraction techniques based on monolithic coatings, and exhibited lower detection limits in comparison with similar methods for the determination of diazepam and nordazepam in biological fluids.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号