首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
化学   13篇
物理学   7篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2013年   2篇
  2012年   5篇
  2010年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Vapor‐phase polymerization (VPP) is an important method for the fabrication of high‐quality conducting polymers, especially poly(3,4‐ethylenedioxythiophene) (PEDOT). In this work, the effects of additives and post‐treatment solvents on the thermoelectric (TE) performance of VPP‐PEDOT films were systematically investigated. The use of 1‐butyl‐3‐menthylinidazolium tetrafluoroborate ([BMIm][BF4], an ionic liquid) was shown to significantly enhance the electrical conductivity of VPP‐PEDOT films compared with other additives. The VPP‐PEDOT film post‐treated with mixed ethylene glycol (EG)/[BMIm][BF4] solvent displayed the high power factor of 45.3 μW m?1 K?2 which is 122% higher than that prepared without any additive or post‐treatment solvent, along with enhanced electrical conductivity and Seebeck coefficient. This work highlighted the superior effect of the [BMIm][BF4] additive and the EG/[BMIm][BF4] solvent post‐treatment on the TE performance of the VPP‐PEDOT film. These results should help with developing the VPP method to fabricate high‐performance PEDOT films. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1738–1744  相似文献   
2.
3.
In centralized massive multiple-input multiple-output (MIMO) systems, the channel hardening phenomenon can occur, in which the channel behaves as almost fully deterministic as the number of antennas increases. Nevertheless, in a cell-free massive MIMO system, the channel is less deterministic. In this paper, we propose using instantaneous channel state information (CSI) instead of statistical CSI to obtain the power control coefficient in cell-free massive MIMO. Access points (APs) and user equipment (UE) have sufficient time to obtain instantaneous CSI in a slowly time-varying channel environment. We derive the achievable downlink rate under instantaneous CSI for frequency division duplex (FDD) cell-free massive MIMO systems and apply the results to the power control coefficients. For FDD systems, quantized channel coefficients are proposed to reduce feedback overhead. The simulation results show that the spectral efficiency performance when using instantaneous CSI is approximately three times higher than that achieved using statistical CSI.  相似文献   
4.
Li Q  Zhang K  Wang T  Zhou X  Wang J  Wang C  Lin H  Li X  Lu Y  Huang G 《The Analyst》2012,137(16):3760-3766
Multiplexed analysis allows researchers to obtain high-density information with minimal assay time, sample volume and cost. Currently, microcarrier or particle-based approaches for multiplexed analysis involve complicated or expensive encoding and decoding processes. In this paper, a novel optical encoding technique based on nano-silicon dioxide film is presented. Microcarriers composed of thermally grown silicon dioxide (SiO(2)) film and monocrystalline silicon (Si) substrate were fabricated. The nano-silicon dioxide film exhibited unique surface color by low-coherence interference. Hence the colors can be used for encoding at least 100 microcarriers loaded with films of different thickness. We demonstrated that color-encoded microcarriers loaded with antigens could be used for multiplexed immunoassays to detect goat anti-human IgG, goat anti-mouse IgG and goat anti-rabbit IgG, with fluorescent detection as the interrogating approach. This microcarrier-based method also exhibited improved analytical performance compared with a microarray technique. This approach will provide new opportunities for multiplexed target assay development.  相似文献   
5.
Li Q  Qiu T  Hao H  Zhou H  Wang T  Zhang Y  Li X  Huang G  Cheng J 《The Analyst》2012,137(7):1596-1603
A deep ultraviolet-visible (DUV-Vis) reflected optical fiber sensor was developed for use in a simple spectrophotometric detection system to detect the absorption of various illegal drugs at wavelengths between 180 and 800 nm. Quantitative analyses performed using the sensor revealed a high specificity and sensitivity for drug detection at a wavelength of approximately 200 nm. Using a double-absorption optical path length, extremely small sample volumes were used (32 to 160 nL), which allowed the use of minimal amounts of samples. A portable spectrophotometric system was established based on our optical fiber sensor for the on-site determination and quantitative analysis of common illegal drugs, such as 3,4-methylenedioxymethamphetamine (MDMA), ketamine hydrochloride, cocaine hydrochloride, diazepam, phenobarbital, and barbital. By analyzing the absorbance spectra, six different drugs were quantified at concentrations that ranged from 0.1 to 1000 μg mL(-1) (16 pg-0.16 μg). A novel Matching Algorithm of Spectra Space (MASS) was used to accurately distinguish between each drug in a mixture. As an important supplement to traditional methods, such as mass spectrometry or chromatography, our optical fiber sensor offers rapid and low-cost on-site detection using trace amounts of sample. This rapid and accurate analytical method has wide-ranging applications in forensic science, law enforcement, and medicine.  相似文献   
6.
Limiting nitrogen supply has been routinely used as the master regulator to direct lipid biosynthesis. However, this strategy does not work with nitrogen-rich substrates, such as Jerusalem artichoke (JA), a fructose-based biomass, while it is difficult to obtain a high carbon-to-nitrogen (C/N) molar ratio. In this study, an alternative strategy to promote lipid accumulation by the oleaginous yeast Trichosporon fermentans CICC 1368 was developed by limiting phosphorous supply, and this strategy was implemented with JA hydrolysate as substrate. We showed that lipid accumulation was directly correlated with the C/P ratio of the culture media for T. fermentans. The time course of cell growth and lipid production was analyzed in a media with an initial C/P ratio of 6342, and the cellular lipid content could reach up to 48.5% of dry biomass. Moreover, JA hydrolysates were used as substrate for microbial lipid accumulation, under high C/P molar ratio condition, lipid yield, lipid content, and lipid coefficient increased by 10, 30, and 34%, respectively. It showed that by limiting phosphorus, the conversion of sugar into lipids can be improved effectively. Limiting phosphorus provides a promising solution to the problem of microbial lipid production with nitrogen-rich natural materials.  相似文献   
7.
In the user-centric, cell-free, massive multi-input, multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) system, a large number of deployed access points (APs) serve user equipment (UEs) simultaneously, using the same time–frequency resources, and the system is able to ensure fairness between each user; moreover, it is robust against fading caused by multi-path propagation. Existing studies assume that cell-free, massive MIMO is channel-hardened, the same as centralized massive MIMO, and these studies address power allocation and energy efficiency optimization based on the statistics information of each channel. In cell-free, massive MIMO systems, especially APs with only one antenna, the channel statistics information is not a complete substitute for the instantaneous channel state information (CSI) obtained via channel estimation. In this paper, we propose that energy efficiency is optimized by power allocation with instantaneous CSI in the user-centric, cell-free, massive MIMO-OFDM system, and we consider the effect of CSI exchanging between APs and the central processing unit. In addition, we design different resource block allocation schemes, so that user-centric, cell-free, massive MIMO-OFDM can support enhanced mobile broadband (eMBB) for high-speed communication and massive machine communication (mMTC) for massive device communication. The numerical results verify that the proposed energy efficiency optimization scheme, based on instantaneous CSI, outperforms the one with statistical information in both scenarios.  相似文献   
8.
Scanning tunneling microscopy is a powerful tool to build artificial atomic structures that do not exist in nature but possess exotic properties.In this study,w...  相似文献   
9.
A portable UV (190–400 nm) spectrophotometric based reflected fiber optic sensor system is presented for the on-site detection and identification of explosives. A reflected fiber optic sensor for explosives analysis was developed, with low sample consumption (20–100 nL) and a wide concentration quantification range (1.1–250 mg L−1). Seven common explosives [pentaerythritol tetranitrate (PETN), trinitrophenylmethylnitramine (CE), trinitrotoluene (TNT), dinitrotoluene (DNT), picric acid (PA), cyclotetramethylenetetranitramine (HMX), cyclotrimethylenetrinitramine (RDX)] and a PETN–RDX mixture (to simulate the Semtex used in many terrorist bombings) were quantitatively analyzed and identified by the proposed system in less than 3 s per test, with limits of detection (LOD) of 0.3 mg L−1. Due to chemical interference problems in the UV wavelengths range, a novel feature matching algorithm (FMA) was proposed for explosive identification, which was proved to have higher specificity and better anti-interference ability. Real post-blast debris samples were analyzed by the proposed method, and the results were validated against an LC/MS/MS method. The rapid, cost-effective detection with low sample consumption and wide applicability achieved by this system is highly suitable for homeland security on-site applications, such as rapid sample screening in post-blast debris.  相似文献   
10.
Electrochemically functional porous membranes of low cost are appealing in various electrochemical devices used in modern environmental and energy technologies. Herein we describe a scalable strategy to construct electrochemically active, hierarchically porous carbon membranes containing atomically dispersed semi‐metallic Se, denoted SeNCM. The isolated Se atoms were stabilized by carbon atoms in the form of a hexatomic ring structure, in which the Se atoms were located at the edges of graphitic domains in SeNCM. This configuration is different from that of previously reported transition/noble metal single atom catalysts. The positively charged Se, enlarged graphitic layers, robust electrochemical nature of SeNCM endow them with excellent catalytic activity that is superior to state‐of‐the‐art commercial Pt/C catalyst. It also has long‐term operational stability for hydrazine oxidation reaction in practical hydrazine fuel cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号