首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   2篇
  国内免费   1篇
化学   196篇
晶体学   1篇
力学   1篇
数学   15篇
物理学   31篇
  2021年   5篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2014年   4篇
  2013年   8篇
  2012年   11篇
  2011年   12篇
  2010年   7篇
  2009年   4篇
  2008年   2篇
  2007年   6篇
  2006年   15篇
  2005年   9篇
  2004年   17篇
  2003年   7篇
  2002年   9篇
  2001年   9篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   11篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   6篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1980年   1篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1968年   2篇
  1931年   1篇
  1929年   1篇
  1928年   2篇
排序方式: 共有244条查询结果,搜索用时 15 毫秒
1.
Partition fractions of hexane, CCl4 and CHCl3 from methanolic extracts of marine algae were each examined for cytotoxic activities against cultured P-388 lymphocytic leukemia cells. Cytotoxic activities were found for partition fractions of 21 species of seaweed. Bioactivity-guided fractionation of the CCl4 partition fraction from Sargassum tortile, exhibiting the most prominent activity, afforded dihydroxysargaquinone (1) and sargatriol (2) previously isolated from this alga. The former was evaluated as a cytotoxic principle, and the latter, showing moderate activity, was suggested to be an artifact derived from 1 during the isolation procedure.  相似文献   
2.
3.
Noncovalent interactions, such as hydrogen bonding, metal coordination, and π-π stacking, are increasingly being utilized to develop well-ordered and self-organized supramolecular materials. Recently, new types of nonclassical weak interactions, such as C H···π, C H···F C, and C H···O, have been exploited in stabilizing the specific conformations of molecules and molecular assemblies in the solid state. These noncovalent interactions play an important role in materials comprised of polymer chains, because cooperative effects from a large number of weak interactions can lead to drastic changes in its conformation, several properties, and functionalities. The programmed design of synthetic helical polymer with well-defined molecular conformation has been the main subject in modern polymer science and engineering. Silicon-catenated polysilane is an ideal helical silicon quantum wire and polymers with unique photophysical properties. The present review highlights the spectroscopic evidences for through-space weak Si···F C interaction in poly(methyl-3,3,3-trifluoropropylsilane) ( 1 ) in noncoordinating and coordinating solvents by means of NMR (29Si and 19F) and IR spectroscopies, and viscometric measurement. It was found that 1 is applicable for chemosensors with an extremely high sensitivity and selectivity toward fluoride ions in tetrahydrofuran (THF) and with high sensitivity for nitroaromatic compounds, detected by a decrease in the photoluminescence intensity in THF and in thin solid film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5060–5075, 2006  相似文献   
4.
5.
Summary The vibronic character of this molecular device has been studied using isomorphic electron orbitals. The leading role of the softest vibrational mode for the electron transport process is stressed by the quantum mechanical treatment of the rearrangement operator. The theory was used to investigate the possible function of the soliton valve, which has been suggested as a switching tip. The electronic flexibility of the cyclopropenyl radical with respect to molecular vibrations, which is important for the function of the molecular device, is well characterized by the hardness and softness of the electron structure in terms of the orbital energy-occupation number correlation diagram.  相似文献   
6.
Phonon-assisted interchain hopping of negatively charged solitons in polyacetylene has been studied using a local chemical reaction model CH + CH4 → CH4 + CH. Quantum chemical characteristics of the electron transfer process have been analyzed in terms of the dynamic electron density and the mutual polarization moment. The CH stretching vibrational motion of CH4, which is a local model of the sp3 defect, has been found to play a significant role for the electron transfer. The excitation of the corresponding vibrational mode of the sp3 defect would promote the interchain hopping of the charged soliton. The electron transfer process has also been studied in terms of the “regional” density functional theory. It has been shown that the driving force of the electron transfer is represented by the regional chemical potentials.  相似文献   
7.
Mo-V-M(=Al, Ga, Bi, Sb and Te)–O mixed oxide catalysts were synthesized hydrothermally for the first time, characterized structurally, and tested for ethane and propane oxidation after activation by various ways. These catalysts were black solids of rod-shaped (fiber like) crystals, which had a layer structure in the direction of fiber axis and a high dimensional arrangement of metal octahedra in the cross-section plane. These fresh crystalline materials became active for catalytic oxidation of alkanes after heat-treatment at 600 °C and subsequent grinding in order to increase exposed plane of the cross-section. The resulting catalysts were very active for an oxidative dehydrogenation of ethane with 80% of the ethylene selectivity in the reaction temperature range of 300 to 400 °C and also showed about 50% selectivity to acrylic acid in the propane oxidation. Multi-functional character which derived from the high dimensional structure of the catalysts and mechanism of the selective alkane oxidation were discussed.  相似文献   
8.
A perturbation theory for normal coordinates of nonadiabatic solvation is presented by means of the “string model” of chemical reactions. The dynamic normal coordinate is introduced for the perturbational treatment of the “intrinsic” normal coordinates that are orthogonal to the reaction path. The reaction is defined as the intrinsic reaction coordinate (IRC ) that is treated as a string. The string is thrown in the external force field that acts as a nonadiabatic source of perturbation. As an application of the present treatment, the effect of a water molecule for hydration reaction of formaldehyde is calculated. A second-order perturbation effect for the enhancement of the reaction rate is found.  相似文献   
9.
Electron-phonon interactions in the photoinduced excited electronic states in molecular systems such as phenanthrene-edge-type hydrocarbons are discussed and compared with those in the monoanions and cations. The complete phase patterns difference between the highest occupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbitals (LUMO) (the atomic orbitals between two neighboring carbon atoms combined in phase (out of phase) in the HOMO are combined out of phase (in phase) in the LUMO) are the main reason that the C-C stretching modes around 1500 cm(-1) afford much larger electron-phonon coupling constants in the excited electronic states than in the charged electronic states. The frequencies of the vibrational modes that play an essential role in the electron-phonon interactions for the excited electronic states are similar to those for the monoanions and cations in phenanthrene-edge-type hydrocarbons. Possible electron pairing and Bose-Einstein condensation in the photoinduced excited electronic states as well as those in the monoanions and cations in molecular systems such as phenanthrene-edge-type hydrocarbons are also discussed.  相似文献   
10.
Electron-phonon interactions in the monoanions of polyacetylenes such as C2H4 (2tpa), C4H6 (4tpa), C6H8 (6tpa), and C8H10 (8tpa) are studied and compared with those in the monoanions of polyacenes. The C-C stretching A(g) modes around 1500 cm(-1) the most strongly couple to the lowest unoccupied molecular orbitals (LUMO) in polyacetylenes. The estimated total electron-phonon coupling constants for the monoanions (l(LUMO)) are 0.579, 0.555, 0.463, and 0.401 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. The l(LUMO) values for polyacetylenes are much larger than those for polyacenes. Furthermore, the l(LUMO) value for polyacetylene with C(2h) geometry is estimated to be 0.254 eV, and is larger than that (0.024 eV) for polyacene with D(2h) geometry. The phase patterns difference between the LUMO of polyacenes localized on the edge part of carbon atoms, and the delocalized LUMO of polyacetylenes is the main reason for the calculated results. The single charge transfer through the molecule in polyacetylenes are also discussed. The reorganization energies between the neutral molecule and the corresponding monoanion are estimated to be 0.164, 0.144, 0.125, and 0.113 eV for 2tpa, 4tpa, 6tpa, and 8tpa, respectively. Such reorganization energy decreases with an increase in molecular size. The conditions under which the attractive electron-electron interactions are realized in the monoanions of polyacetylenes and polyacenes are discussed. In terms of the electron-phonon interactions and the reorganization energies, the relationships between the normal and possible superconducting states are briefly discussed. We find that the monoanions with smaller molecular size cannot easily become good conductors, however, the conditions under which the interactions between two electrons are attractive are more easily realized in the monoanions with smaller molecular size than in the monoanions with larger molecular size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号