首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   8篇
物理学   1篇
  2020年   2篇
  2012年   1篇
  2011年   3篇
  2008年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.

This study aims to experimentally examine the energy-saving potential by using R-134a filled separated two-phase thermosiphon loop (STPTL) for data center applications. A parametric study had been made to compare the energy consumption of two data center racks. Two fin-and-tube heat exchangers were attached to one of the racks to form two individual thermosiphon loops. The experiments were carried out subject to different operating conditions, including three ambient temperatures (20 °C, 23 °C, and 27 °C) and filling ratios ranging from 30 to 90% in association with heating loads ranging between 1.5 kW and 6 kW. Parametric influences regarding concentrated heat loading or uniform heat loading are studied. It was found that an appreciable energy-savings can be obtained at high filling ratios and a maximum of 49% energy-saving with the assistance of thermosiphon is observed. Accordingly, the rising of system pressure will result in noticeable savings. Relative to the uniform heat loading of the data rack, the thermosiphon shows even more energy-saving potential in concentrated heat loading. This phenomenon is more pronounced at a lower ambient temperature like 20 °C. On the other hand, there is no appreciable energy-saving for the thermosiphon between concentrated and uniform heating loads when the ambient temperature is high (27 °C). Furthermore, the influence of airflow rate was also investigated under various ambient temperatures with a 90% filling ratio and a heating load of 6 kW. The results revealed that the lower airflow rate in the thermosiphon yields comparatively better energy-saving than the higher flow rate. The study on the influence of using two STPTLs indicated that 15–23% energy-saving can be achieved at a 90% filling ratio and 6 kW heating load for all the studied ambient conditions if compared with testing each loop separately. Lower thermal resistance is seen at the higher filling ratios, ambient temperatures, and heating loads.

  相似文献   
2.
Fluorinated amorphous carbon (a-C:F) films e.g. plasma polymerised perfluorocyclobutane have long attracted much consideration due to their low surface energy, hydrophobicity, low refractive index, good electrical and thermal insulation and good thermal stability. Although a-C:F films have many advantages, hydrophobic stability over time in air and water remains a major concern. In this study, the effects of weathering conditions on the hydrophobicity of fluorocarbon films prepared from perfluorocyclobutane precursors were examined using water contact angle measurements. It was found that the high initial hydrophobicity of as-deposited films degrades rapidly in humid conditions. The stability of hydrophobicity can be significantly improved when a suitable treatment such as annealing is employed. The mechanism of weathering was explained with the help of a number of morphological and chemical characterisation techniques such as Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS). In particular, XPS results demonstrated that a reduction in the overall amount of -CF3 radical, oxygenation of surface fluorides and the formation of an overlayer all influence the degradation of fluorocarbon in aquatic environment.  相似文献   
3.
Simultaneous nucleation of gold nanoparticles and polymerization of tyramine has been carried out at an immiscible electrolyte interface. By transferring the gold ion of tetraoctylammoniumtetracloroaurate (TOAAuCl(4)) from the organic to the aqueous phase, a fast homogeneous electron transfer from the tyramine monomer reduces the gold ion. Electropolymerization then proceeds, and gold nanoparticles form. The newly formed nanoparticles act as nucleation sites for the deposition of the oligomers/polymer (and possibly vice versa). This results in gold nanoparticles stabilized in a polytyramine matrix. The size of the nanoparticles is controlled by the concentration of oligomers/polymer in solution. The polymer nanoparticle composite film was analyzed with TEM, XPS, and AFM.  相似文献   
4.
Summary.  We have studied the coercivity of magnetic nanonetworks as a function of thickness, nominal pore diameter, and surface/interface roughness in the thickness range of approximately 2 to 45 nm where a Néel-type domain wall has been theoretically predicted. Such magnetic nanonetworks have been prepared by sputtering iron on the walls of commercially available porous nano-channel alumina (NCA) membranes. The thickness dependence of coercivity has also been studied on films deposited on surface-oxidized Si and glass subtrates. These substrates are essentially non-porous and much smoother than NCAs. Our investigation shows that the coercivity of films deposited on Si and glass depends on the spatial fluctuation of thickness which arises from the roughness of the apparently smooth substrates. On the other hand, NCAs are found to be inherently quite rough, and films on NCAs show a complex thickness dependence which arises from the interplay between surface/interface roughness, domain pinning due to porosity, surface anisotropy, surface torques, and oxidation of the iron films. It was found that the growing films on NCA substrates led to partial filling up of the pore entrance, thereby reducing its effective diameter. The film growth also affects the roughness of the film, which in turn affects its coercivity. We propose a model for the thickness dependence of coercivity based on the pore fill-up geometry considering the effective pore diameter and the critical thickness at which the pore will be completely filled up. Experimental results on coercivity with thickness variation of iron network deposited on NCA generally agree with the suggested model. Received October 16, 2001. Accepted (revised) January 11, 2002  相似文献   
5.
The understanding and the precise control of protein adsorption is extremely important for the development and optimization of biomaterials. The challenge resides in controlling the different surface properties, such as surface chemistry, roughness, wettability, or surface charge, independently, as modification of one property generally affects the other. We demonstrate the creation of electrically modified patterns on hydroxyapatite by using scanning electron beam to tailor the spatial regulation of protein adsorption via electrostatic interactions without affecting other surface properties of the material. We show that domains, presenting modulated surface potential, can be created to precisely promote or reduce protein adsorption.  相似文献   
6.
Journal of Thermal Analysis and Calorimetry - In this paper, we use a Multiphysics approach in COMSOL? Platform to develop and validate a finite element model that simulates thermal images...  相似文献   
7.
Strontium can be substituted into the calcium sublattice of hydroxyapatite without a solubility limit. However, recent ab initio simulations carried out at 0 K report endothermic nature of this process. There is also striking discrepancy between experimentally observed preference of Sr doping at Ca-II sites and the first principles calculations, which indicate that a Ca-I site is preferred energetically for the Sr substitution. In this paper we combine insights from Density Functional Theory simulations and regular configurational entropy calculations to determine the site preference of Sr doping in the range of 0-100 at% at finite temperatures. In addition, samples of Sr-HA are synthesized and refinement of the relevant structural information provides benchmark information on the experimental unit cell parameters of Sr-HA. We find that the contribution of the entropy of mixing can efficiently overcome the endothermic excess energy at a temperature typical of the calcining step in the synthesis route of hydroxyapatite (700-950 °C). We observe that the most preferential substitution pattern is mixed substitution of Sr regardless of the concentration. For a wet chemical method, carried out at a moderate temperature (90 °C), the mixed doping is still slightly favourable at higher Sr-concentrations, except the range at 20% Sr, where Site II substitution is not restricted energetically and equally possible as the mixed doping. We observe a close correspondence between our theoretical results and available experimental data. Hence it should be possible to apply this theory to other divalent dopants in HA, such as Zn(2+), Mg(2+), Pb(2+), Cu(2+), Ba(2+), Cd(2+) etc.  相似文献   
8.
A hydrophobic self-assembled monolayer (SAM) of fluoro-octyl-trichloro-silane (FOTS) was deposited on silicon using a vapor phase technique. The aging of the hydrophobic layer was examined using water contact angle measurements. It has been found that while such monolayer films suffer from a loss of hydrophobicity with time, pre-immersion nitrogen annealing can significantly improve the aging characteristics of these monolayers. The effect of nitrogen annealing on the improved aging properties of SAM coatings has been investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The hydrolytic stability and the effect of nitrogen annealing were studied by morphological evolution during immersion. A spontaneous formation of silane mounds on the surface of the monolayers was found by AFM. These mounds have been irreversibly transformed from initially uniform hydrophobic surface layers. It is highly probable that the compliance of these mounds can reasonably allow hydrophilic sites to be located around the mounds. Interestingly, the density of these mounds formation is very less on the annealed samples. XPS reveals a higher level of coverage by the N2-annealed film due to agglomeration. A relative abundance of CF3 and CF2 moieties in the annealed film may explain the enhancement of the hydrophobicity as revealed by higher level of water contact angle. This hydrophobicity was found to be significantly stable in water. This novel finding explains the improved hydrophobic stability of FOTS monolayers as primarily a morpho-chemical effect that originates from the densification of the monolayers upon annealing.  相似文献   
9.
Photocatalytic and in situ microbial activity of the amorphous and annealed states of Ag-doped and un-doped titania were examined. Studies on their structure, morphology, composition, and the photo-absorption characteristics of these materials were performed. These results were correlated with the photocatalytic and microbial activity against methicillin resistant Staphylococcus aureus K324 (MRSA), methicillin susceptible S. aureus ATCC 25923 (MSSA), Escherichia coli PA 170, and yeasts Candida albicans ATCC 90028. The annealed powders containing anatase form of titania exhibited relatively higher photocatalytic activity,corresponding to activity against MRSA,when exposed to UV-A radiation. In comparison, amorphous powders exhibited low photoactivity and showed poor antibacterial performance against MRSA under UV-A exposure. Doping of amorphous titania with Ag resulted in an anti-MRSA effect without exposure to UV radiation. In the Ag-doped crystalline anatase samples, the size of Ag primary nanocrystallites increased, which led to the decrease in the surface concentration of Ag and detriment anti-MRSA activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号