首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   3篇
化学   37篇
数学   5篇
物理学   11篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2015年   3篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   7篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   7篇
  2003年   3篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Protein engineering and site-directed mutagenesis is becoming immensely important in both fundamental studies and commercial applications involving proteins and enzymes in biocatalysis. Protein engineering has become a powerful tool to help biochemists and molecular enzymologists elucidate structure-function relationships in enzymic active sites, to understand the intricacies of protein folding and denaturation, and to alter the selectivity of enzymatic catalysis. Commercial applications of engineered enzymes are being developed to increase protein stability, widen or narrow substrate specificity, and to develop novel approaches for use of enzymes in organic synthesis, drug design, and clinical applications. In addition to protein engineering, novel expression systems have been designed to prepare large quantities of genetically engineered proteins. Recent US patents and scientific literature on protein engineering, site-directed mutagenesis, and protein expression systems related to protein engineering are surveyed. Patent abstracts are summarized individually and a list of literature references are given.  相似文献   
2.
3.
Reaction of 2-aminoethanethiol ( 3 ) with trans-3-(p-methoxyplienyl)glycidate ( 4 ) gave the rac.-cis-1,4-thiazepinone 5 and a by-product 6 . The structure of 5 was proven by X-ray crystallography. The X-ray data revealed that this compound adopts the chair conformation in the solid state and the heterocyclic ring is sevenmembered. The structure of the by-product 6 was elucidated on the basis of spectral data. Compounds 9 and 10 were inactive as calcium channel blocking agents.  相似文献   
4.
Vanadium environments in Keggin oxopolytungstates were characterized by (51)V solid-state MAS NMR spectroscopy. (C(4)H(9))(4)N(+)-, K(+)-, Cs(+)-, as well as mixed Na(+)/Cs(+)- salts of the mono-, di-, and trivanadium substituted oxotungstates, [VW(11)O(40)](4-), [V(2)W(10)O(40)](5-), and [V(3)W(9)O(40)](6-), have been prepared as microcrystalline and crystalline solids. Solid-state NMR spectra report on the local environment of the vanadium site in these Keggin ions via their anisotropic quadrupolar and chemical-shielding interactions. These (51)V fine structure constants in the solid state are determined by the number of vanadium atoms present in the oxoanion core. Surprisingly, the quadrupolar anisotropy tensors do not depend to any significant extent on the nature of the countercations. On the other hand, the chemical-shielding anisotropy tensors, as well as the isotropic chemical shifts, display large variations as a function of the cationic environment. This information can be used as a probe of the local cationic environment in the vanadium-substituted Keggin solids.  相似文献   
5.
Lanthanide complexes of polyoxometalates, including the α2-P2W17O61 10− ligand, have been pioneered by Michael T. Pope, to whom this paper is dedicated. Examination of the solid-state and solution behavior of lanthanide complexes of the α2-P2W17O61 10− ligand are reported here to identify trends that will facilitate rational synthesis of hybrid organic lanthanide polyoxometalate complexes. Therefore, combining our data with that obtained by Pope and others a number of trends come into view. It is clear that there are two structural types for the 1:1 or 2:2 [Ln(H2O)X2-P2W17O61)]2 14− species. The early lanthanides show a “cap to cap” structure that allows the Ln ion to be 9 coordinate and accommodates the longer bond lengths. The mid-late lanthanides show a “cap to belt” structure that allows the lanthanides to be 8 coordinate; this structural type is appropriate for the shorter bond lengths of the later lanthanides. The 1:1⇌1:2 equilibrium, that was observed by Pope for the Ce(III) analog is prevalent for the early- mid lanthanides. This equilibrium is slightly dependent on pH; however, cations have a major influence on this equilibrium. Larger, poorly hydrated cations appear to favor the 1:2 species for the early to mid lanthanides. Cations do not appear to influence the equilibrium for the later lanthanides; for all counterions, the 1:1 species was stable with no trace of the 1:2 species. Stability constants, K1 and K2, for the early to mid lanthanides were measured in this study by a competitive method and compared well with other published stability constant determinations. We suggest that the stability constants are not only dependent on the strength of interaction of the Ln with the α2-P2W17O61 10− ligand, but are also significantly influenced by the medium. The medium may bias the equilibria of the early-mid lanthanides and later lanthanides. The log K1/log K2 ratios are very close, suggesting that it is difficult to separate the 1:1 and 1:2 Ln: α2-P2W17O61 10− species.Electronic Supplementary Material Supplementary material for this article is available at and is accessible for authorized users.This paper is dedicated to Professor Michael T. Pope in honor of his substantial and sustained contributions to polyoxometalate chemistry and his inspiration to scientists working in the field.  相似文献   
6.
The spectroscopic properties and liquid structure of pure tri-n-butyl phosphate (TBP) and FeCl3/TBP solutions have been investigated by Uv–Vis and Raman spectroscopies, X-ray diffraction and conductometry. Uv–Vis and Raman spectra, supported by conductometric measurements, consistently indicate that the solubilized salt is present mostly as TBP n [FeCl3???n ] n+ and FeCl4 ? complex ions due to specific interaction with the TBP phosphate group. Thanks to this interaction, a high amount of salt (up to 13 % w/w) can be dissolved despite the relatively low dielectric constant of TBP. The X-ray diffractogram of pure TBP has been interpreted in terms of three main contributions which can be attributed to spatial pair correlations between atoms of interacting TBP molecules. In the presence of increasing FeCl3 amounts, it has been observed a progressive structuring effect, exerted by the dissolved salt, on the layers of opportunely oriented TBP molecules due to the formation of the complex ionic species. By simple treatment with NaBH4, the synthesis of Fe nanoparticles has been achieved. The absence of water, the easiness of preparation, the high amount of salt which can be suspended and the peculiar physico-chemical properties of such systems are all elements worth of note for the fields of nanoparticle synthesis and for specialized technological applications.  相似文献   
7.
New routes for the synthesis of mono tetraaryl porphyrinato hafnium(IV) complexes, Hf(IV)Por(L)(2), are reported, where the secondary ligands, L, are determined by the method of purification. These synthetic routes cater to the solubility of the macrocycles and provide access to Hf(IV) complexes of meso tetraaryl porphyrins bearing diverse functional groups such as phenyl, tolyl, pyridyl, pentafluorophenyl, and carboxyphenyl. The latter three derivatives significantly expand the repertoire of hafnium porphyrinates. One route refluxes the porphyrin with HfCl(4) in 1-chloronaphthalene or in a mixed solvent of 1-chloronaphthalene and o-cresol. A second, solventless method is also reported wherein the porphyrin is mixed with Hf(cp)(2)Cl(2) and heated to give the metalated porphyrin in good yields. Simultaneous purification and formation of stable porphyrinato hafnium(IV) diacetate complexes, Hf(Por)OAc(2), is accomplished by elution over silica gel using 3-5% acetic acid in the eluent. Exchange of the acetate ligands for other oxo-bearing ligands can be nearly quantitative, such as p-aminobenzoate (PABA), pentanoate (pent), or octanoate (oct). Notably, we find that two to three of a variety of small multitopic dianions such as peroxo (O(2)(-2)), SO(4)(-2), and HPO(4)(-2) serve to bridge between two Hf(Por) moieties to form stable dimers. The crystal structures of this library of Hf(Por) complexes are reported, and we note that careful analysis of crystallography data reveals (Por)Hf(micro-eta(2)-O(2))(2)Hf(Por) rather than four bridging oxo or hydroxy ions.  相似文献   
8.
Geometric and electronic environments of vanadium have been addressed by (51)V magic angle spinning NMR spectroscopy of six-coordinated polyoxometalate solids. (C(4)H(9))(4)N(+) and mixed Na(+)/Cs(+) salts of the Lindqvist-type mono- and divanadium-substituted oxotungstates, [VW(5)O(19)](3-) and [V(2)W(4)O(19)](4-), have been prepared as microcrystalline and crystalline solids. The solid-state NMR spectra reflect the details of the local environment of the vanadium site in these hexametalate solids via the anisotropic quadrupolar and chemical shielding interactions. Remarkably, these (51)V fine structure constants in the solid state are dictated by the nature and geometry of the countercations. Electrostatic calculations of the electric field gradients at the vanadium atoms have been performed. Experimental trends are well reproduced with the simple electrostatic model, and explain the sensitivity of the anisotropic NMR parameters to the changes in the cationic environment at the vanadium site.  相似文献   
9.
Direct lithography of resist blends, embedding semiconductor colloidal nanocrystals (NCs) is an innovative way to achieve nanopositioning of NCs in quantum-confined optical resonators. In this work, we show a new appealing approach for the fabrication of single-photon sources operating at room temperature by localizing semiconductor colloidal NCs into vertical planar microcavities with lithographic techniques.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号