首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
化学   4篇
  2022年   2篇
  2016年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
4,4′‐Diisothiocyanostilbene‐2,2′‐disulfonic acid (DIDS) is a well‐known ion‐exchange inhibitor targeting cardiac functions and indirectly impeding both radio‐ and chemo‐resistance. A joint computational and experimental study is presented to provide deeper insights into DIDS and other members of this family of compounds. To this end, we applied state‐of‐the‐art density functional theory (DFT) and time‐dependent DFT methods, in addition to measuring the optical properties. The experimental data show that such compounds are highly sensitive to their environment and that the optical properties change within as little time as 7 h. However, the optical properties of DIDS are similar in various acidic/basic environments, which were confirmed by pKa computations on both cis and trans isomers. The protonation analysis also highlights that the singly protonated form of DIDS behaves like a proton sponge compound. The experimentally observed redshift that can be seen when going from water to DMSO was reproduced solely by using the solvation model based on density, although the polarization continuum model and implicit/explicit hybrid schemes were also tested. The characteristic broadening of the absorption peak in water and the vibronic fine structure in DMSO were also reproduced thanks to vibronic coupling simulations associated with the solvent reorganization energy. For other stilbene derivatives, a correlation is found between the maximum absorption wavelength and the Hammett parameters.  相似文献   
2.
In situ NMR spectroelectrochemistry is presented in this study as a useful hybrid technique for the chemical structure elucidation of unstable intermediate species. An experimental setting was designed to follow the reaction in real time during the experimental electrochemical process. The analysis of 1H NMR spectra recorded in situ permitted us (1) to elucidate the reaction pathway of the electrochemical oxidation of phenacetin and (2) to reveal the quinone imine as a reactive intermediate species without using any trapping reaction. Phenacetin has been considered as hepatotoxic at high therapeutic amounts, which is why it was chosen as a model to prove the applicability of the analytical method. The use of 1D and 2D NMR experiments led to the elucidation of the major species produced from the oxidation process. We demonstrated that in situ NMR spectroelectrochemistry constitutes a fast way for monitoring unstable quinone imines and elucidating their chemical structures.
Figure
In situ NMR spectroelectrochemistry for drug metabolism studies  相似文献   
3.
4.
The availability of accurate mean free paths for slow electrons (<50 eV) in water is central to the understanding of many electron-driven processes in aqueous solutions, but their determination poses major challenges to experiment and theory alike. Here, we describe a joint experimental and theoretical study demonstrating a novel approach for testing, and, in the future, refining such mean free paths. We report the development of Monte-Carlo electron-trajectory simulations including elastic and inelastic electron scattering, as well as energy loss and secondary-electron production to predict complete photoelectron spectra of liquid water. These simulations are compared to a new set of photoelectron spectra of a liquid-water microjet recorded over a broad range of photon energies in the extreme ultraviolet (20–57 eV). Several previously published sets of scattering parameters are investigated, providing direct and intuitive insights on how they influence the shape of the low-energy electron spectra. A pronounced sensitivity to the escape barrier is also demonstrated. These simulations considerably advance our understanding of the origin of the prominent low-energy electron distributions in photoelectron spectra of liquid water and clarify the influence of scattering parameters and the escape barrier on their shape. They moreover describe the reshaping and displacement of low-energy photoelectron bands caused by vibrationally inelastic scattering. Our work provides a quantitative basis for the interpretation of the complete photoelectron spectra of liquids and opens the path to fully predictive simulations of low-energy scattering in liquid water.

Our study reveals the detailed influence of elastic and inelastic mean-free paths on the complete photoelectron spectra of liquid water, including the low-energy electron distributions and the reshaping of the primary photoelectron bands.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号