首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Abstract— Photosensitized pyrimidine dimer splitting characterizes the enzymatic process of DNA repair by the DNA photolyases. Possible pathways for the enzymatic reaction include photoinduced electron transfer to or from the dimer. To study the mechanistic photochemistry of splitting by a sensitizer representative of excited state electron donors, a compound in which an indole is covalently linked to a pyrimidine dimer has been synthesized. This compound allowed the quantitative measurement of the quantum efficiency of dimer splitting to be made without uncertainties resulting from lack of extensive preassociation of the unlinked dimer and sensitizer free in solution. Irradiation of the compound with light at wavelengths absorbed only by the indolyl group (approximately 280 nm) resulted in splitting of the attached dimer. The quantum yield of splitting of the linked system dissolved in N20-saturated aqueous solution was found to be 0.04 ± 0.01. The fluorescence typical of indoles was almost totally quenched by the attached dimer. A splitting mechanism in which an electron is efficiently transferred intramolecularly from photoexcited indole to ground state dimer has been formulated. The surprisingly low quantum yield of splitting has been attributed to inefficient splitting of the resulting dimer radical anion. Insights gained from this study have important mechanistic implications for the analogous reaction effected by the DNA photolyases.  相似文献   
2.
Anthraquinone-2-sulfonate (AQS) photosensitizes pyrimidine dimer splitting. Electron abstraction from the dimer is thought to induce dimer splitting, but direct evidence for the existence and intermediacy of dimer radical cations has been lacking. By employing photochemically induced dynamic nuclear polarization, we have found emission signals in the NMR spectra of dimers upon photolysis of dimers in the presence of anthraquinone-2-sulfonate. The two dimers employed were cis, syn-thymine dimer in which the N(1)-positions were linked by a three-carbon bridge and the N(3), N(3')-dimethyl derivative of that compound. The anthraquinone-2-sulfonate sensitized photochemically induced dynamic nuclear polarization spectrum of the methylated derivative exhibited an emission signal from the dimer-C(6) hydrogens. This result implied the existence of a dimer radical cation (mD+.) formed by electron abstraction by excited anthraquinone-2-sulfonate and nuclear spin sorting within a solvent caged radical ion pair [mD+. AQS-.]. Product pyrimidine photochemically induced dynamic nuclear polarization signals were also seen [enhanced absorption by C(6)-hydrogens and emission by C(5)-methyl groups]. Nuclear spin polarization in the product resulted from spin sorting in one or more of its precursors, including mD+. The results support the conclusion that dimer radical cations not only exist but are intermediates in the photosensitized splitting of pyrimidine dimers by anthraquinonesulfonate.  相似文献   
3.
Abstract— Intramolecularly photosensitized pyrimidine dimer splitting can serve as a model for some aspects of the monomerization of dimers in the enzyme-substrate complex composed of a photolyase and UV-damaged DNA. We studied compounds in which a pyrimidine dimer was covalently linked either to indole or to 5-methoxyindole. Laser flash photolysis studies revealed that the normally observed photoejection of electrons from the indole or the 5-methoxyindole to solvent was diminished by an order of magnitude for indoles with dimer attached (dimer-indole and dimer-methoxyindole). The fluorescence lifetime of dimer-indole in aqueous methanol was 0.85 ns, whereas that of the corresponding indole without attached dimer (tryptophol) was 9.7 ns. Similar results were obtained for the dimer-methoxyindole (0.53 ns) and 5-methoxytryptophol (4.6 ns). The quantum yield of dimer splitting for the dimer-methoxyindole (φ287K7 = 0.08) was only slightly greater than the value found earlier for the dimer bearing the unsubstituted indole (4>2K7= 0.04). Transient absorption spectroscopy also revealed lower yields of indole radical cations following laser flash photolysis of dimer-indole compared to the indole without attached dimer. Dimer-methoxyindole behaved similarly. These results are interpreted in terms of an enhanced rate of radiationless relaxation of the indole and methoxyindole excited singlet states in dimer-indoles. The possible quenching of the indole and methoxyindole excited states via electron abstraction by the covalently linked dimer is discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号