首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   2篇
物理学   2篇
  2007年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Recent developments in quantitative surface analysis by Auger (AES) and x-ray photoelectron (XPS) spectroscopies are reviewed and problems relating to a more accurate quantitative interpretation of AES/XPS experimental data are discussed. Special attention is paid to consideration of elementary physical processes involved and influence of multiple scattering effects on signal line intensities. In particular, the major features of core-shell ionization by electron impact, Auger transitions and photoionization are considered qualitatively and rigorous approaches used to calculate the respective transition probabilities are analysed. It is shown that, in amorphous and polycrystalline targets, incoherent scattering of primary and signal Auger and photoelectrons can be described by solving analytically a kinetic equation with appropriate boundary conditions. The analytical results for the angular and energy distribution, the mean escape depth, and the escape probability as a function of depth of origin of signal electrons as well as that for the backscattering factor in AES are in good agreement with the corresponding Mote Carlo simulation data. Methods for inelastic background subtraction, surface composition determination and depth-profile reconstructions by angle-resolved AES/XPS are discussed. Examples of novel techniques based on x-ray induced photoemission are considered.  相似文献   
2.
3.
Tilinin  I. S.  Werner  W. S. M. 《Mikrochimica acta》1994,114(1):485-503
The study of fast electron interaction with solids in the energy range from 100 eV to several tens of keV is prompted by quickly developing microbeam analysis techniques such as electron probe microanalysis, scanning electron microscopy, electron energy loss spectroscopy and so on. It turned out that for random solids the electron transport problem might be solved on the basis of the generalized radiative field similarity principle. The latter states that the exact differential elastic cross section in the kinetic equation may be replaced by an approximate one provided the conditions of radiative field similarity are fulfilled. Application of the generalized similarity principle to electron scattering in solids has revealed many interesting features of electron transport. Easy to use and effective formulae have been obtained for the angular and energy distribution of electrons leaving a target, total yields of characteristic photons and slow electrons escaping from a sample bombarded by fast primaries, escape probability of Auger electrons as a function of depth etc. The analytical results have been compared with Monte Carlo calculations and experiments in a broad range of electron energies and scattering properties of solids and good agreement has been observed.  相似文献   
4.
The method of neutral injection is studied as applied to small tokamaks, including those with a small aspect ratio. Devices having constituted the basis for a neutral injection complex of the Globus-M spherical tokamak are listed. The atomic beam injector and systems providing its functioning are described in detail. Techniques to measure the basic parameters of the beam that are used in the injector are outlined. The atomic beam parameters obtained using IPM-1 and IPM-2 ion sources during bench tests and during operation of the complex are presented. The range of the operating parameters of the neutral injection complex and ways of its expansion are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号