首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   6篇
  2014年   1篇
  2011年   1篇
  2009年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
Dermatophytes are fungi that cause infections of keratinized tissues. We have recently demonstrated the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment (PDT) with 5,10,15-Tris(4-methylpyridinium)-20-phenyl-[21 H ,23 H ]-porphine trichloride (Sylsens B) in 5 m m citric acid/sodium citrate buffer (pH 5.2, formulation I). In this work, we examined the penetration of Sylsens B in healthy and with T. rubrum infected skin and we investigated the susceptibility of T. rubrum to PDT using formulation I and UVA-1 radiation (340–550 nm). Skin penetration studies were performed with formulations I and II (Sylsens B in PBS, pH 7.4) applied on dermatomed skin, human stratum corneum (SC), disrupted SC by T. rubrum growth and SC pretreated with a detergent. No penetration was observed in healthy skin. Disruption of SC by preceding fungal growth caused Sylsens B penetration at pH 7.4, but not at pH 5.2. However, chemically damaged SC allowed Sylsens B to penetrate also at pH 5.2. UVA-1 PDT was applied ex vivo during two fungal growth stages of two T. rubrum strains (CBS 304.60 and a clinical isolate). Both strains could be killed by UVA-1 alone (40 J/cm2). Combined with formulation I (1 and 10 μ m Sylsens B for, respectively, CBS 304.60 and the clinical isolate), only 18 J/cm2 UVA-1 was required for fungal kill. Therefore, PDT with 10 μ m Sylsens B (formulation I) and 18 J/cm2 UVA-1 could be considered as effective and safe. This offers the possibility to perform clinical studies in future.  相似文献   
2.
The application of photosensitizers for the treatment of fungal infections is a new and promising development within the field of photodynamic treatment (PDT). Dermatophytes, fungi that can cause infections of the skin, hair and nails, are able to feed on keratin. Superficial mycoses are probably the most prevalent of infectious diseases in all parts of the world. One of the most important restrictions of the current therapeutic options is the return of the infection and the duration of the treatment. This is especially true in the case of infections of the nail (tinea unguium) caused by Trichophyton rubrum, an anthropophilic dermatophyte with a worldwide distribution. Recently, we demonstrated that 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B) and deuteroporphyrin monomethylester were excellent photosensitizers toward T. rubrum when using broadband white light. This study demonstrates the photodynamic activity of these photosensitizers with red light toward both a suspension culture of T. rubrum and its isolated microconidia. The higher penetration depth of red light is important for the PDT of nail infections. In addition, we tested the photodynamic activity of a newly synthesized porphyrin, quinolino-[4,5,6,7-efg]-7-demethyl-8-deethylmesoporphyrin dimethylester, displaying a distinct peak in the red part of the spectrum. However, its photodynamic activity with red light toward a suspension culture of T. rubrum appeared to be only fungistatic. Sylsens B was the best photosensitizer toward both T. rubrum and its microconidia. A complete inactivation of the fungal spores and destruction of the fungal hyphae was found. In studies into the photostability, Sylsens B appeared to be photostable under the conditions used for fungal PDT. A promising result of this study is the demonstration of the complete degradation of the fungal hyphae in the time after the PDT and the inactivation of fungal spores, both with red light. These results offer the ingredients for a future treatment of fungal infections, including those of the nail.  相似文献   
3.
Novel multifunctional photosensitizers (MFPSs), 5,10,15‐tris(4‐N‐methylpyridinium)‐20‐(4‐phenylthio)‐[21H,23H]‐porphine trichloride (PORTH) and 5,10,15‐tris(4‐N‐methylpyridinium)‐20‐(4‐(butyramido‐methylcysteinyl)‐hydroxyphenyl)‐[21H,23H]‐porphine trichloride (PORTHE), derived from 5,10,15‐Tris(4‐methylpyridinium)‐20‐phenyl‐[21H,23H]‐porphine trichloride (Sylsens B) and designed for treatment of onychomycosis were characterized and their functionality evaluated. MFPSs should function as nail penetration enhancer and as photosensitizer for photodynamic treatment (PDT) of onychomycosis. Spectrophotometry was used to characterize MFPSs with and without 532 nm continuous‐wave 5 mW cm?2 laser light (± argon/mannitol/NaN3). Nail penetration enhancement was screened (pH 5, pH 8) using water uptake in nails and fluorescence microscopy. PDT efficacy was tested (pH 5, ± argon/mannitol/NaN3) in vitro with Trichophyton mentagrophytus microconida (532 nm, 5 mW cm?2). A light‐dependent absorbance decrease and fluorescence increase were found, PORTH being less photostable. Argon and mannitol increased PORTH and PORTHE photostability; NaN3 had no effect. PDT (0.6 J cm?2, 2 μm ) showed 4.6 log kill for PORTH, 4.4 for Sylsens B and 3.2 for PORTHE (4.1 for 10 μm ). Argon increased PORTHE, but decreased PORTH PDT efficacy; NaN3 increased PDT effect of both MFPSs whereas mannitol increased PDT effect of PORTHE only. Similar penetration enhancement effects were observed for PORTH (pH 5 and 8) and PORTHE (pH 8). PORTHE is more photostable, effective under low oxygen conditions and thus realistic candidate for onychomycosis PDT.  相似文献   
4.
Owing to the accessibility of skin to light, many applications of photodynamic treatment (PDT) have been developed within dermatology. The recent increase of dermatological antimicrobial PDT investigations is related to the growing problem of bacterial and fungal resistance to antibiotics. This review focuses on the susceptibility of dermatophytic fungi, in particular Trichophyton rubrum, to PDT and shows its potential usefulness in treatment of clinical dermatophytoses. There are no data indicating significant differences in PDT susceptibility between various dermatophytes and it is unlikely that treatment problems of especially T. rubrum with current antimycotics would occur in case of PDT. Red light 5-aminolevulinic acid-mediated PDT is after repeated sessions successful in in vivo treatment of onychomycosis (fungal nail infection) caused by various dermatophytes. Regarding skin dermatophytoses, UVA-1 PDT with cationic porphyrins appears to be safe and efficient. Most effective toward T. rubrum ex vivo is 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B) when combined with UVA-1 radiation or red light; this creates the possibility of efficiently treating nail infections and remaining spores in hair follicles. If the promising in vitro and ex vivo results could be transferred to clinical practice, then PDT has a good prospect to become a worthy alternative to established antifungal drugs.  相似文献   
5.
In the past few years, there has been an increase in the application of photosensitizers for medical purposes. A good standardized test system for the evaluation of the mutagenic potentials of photosensitizers is therefore an indispensable device. In the standard Ames test, white light itself was proven to be mutagenic and the result influenced by the light source. Lack of a reliable positive control is another problem in many genotoxicity test systems used for the evaluation of mutagenicity of photosensitizers. Based on the validated somatic mutation and recombination test, known as SMART, and using Drosophila melanogaster, we developed the Photo-SMART and demonstrated that methylene blue, known to induce photomutagenicity, can act as a positive control in the presented test system. The SMART scores for the loss of heterozygosity caused predominantly by homologous mitotic recombination. The Photo-SMART can be used to detect photogenotoxicity caused by short-lived photoproducts or by stable photoproducts or both. We demonstrated the Photo-SMART to be a good standardized test system for the evaluation of mutagenic potentials of the photosensitizer 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (TPP). We demonstrated that TPP was mutagenic using the Photo-SMART. For hematoporphyrin, the results of the Photo-SMART indicate the absence of mutagenicity.  相似文献   
6.
Dermatophytes are fungi that can cause infections (known as tinea) of the skin, hair and nails because of their ability to use keratin. Superficial mycoses are probably the most prevalent of infectious diseases worldwide. One of the most distinct limitations of the current therapeutic options is the recurrence of the infection and duration of treatment. The present study shows that Trichophyton rubrum in suspension culture is susceptible to photodynamic treatment (PDT), a completely new application in this area. T. rubrum could be effectively killed with the use of the light-activated porphyrins deuteroporphyrin monomethylester (DP mme) and 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B). The photodynamic efficacy was compared with that of some other photosensitizers that are well known in the field of PDT: the porphyrins deuteroporphyrin and hematoporphyrin, the drug Photofrin and several phthalocyanines. It was demonstrated that with the use of broadband white light, the phthalocyanines and Photofrin displayed a fungistatic effect for about 1 week, whereas all the porphyrins caused photodynamic killing of the dermatophyte. Sylsens B was the most effective sensitizer and showed no dark toxicity; therefore, in an appropriate formulation, it could be a promising candidate for the treatment of various forms of tinea. For Sylsens B and DP mme, which displayed the best results, a concentration-dependent uptake by T. rubrum was established.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号