首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   5篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
The degradation of an aliphatic-aromatic biodegradable polyester film was studied under conditions of solar exposure and soil burial in a tropical area. Film samples were evaluated for changes over 40 weeks by visual examination, scanning electronic microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, mechanical properties, molecular weight, gel content, and thermal properties. Photodegradation played a major role in the atmospheric degradation of the film, causing it to lose integrity and mechanical properties after week 8 due to main chain scission and crosslinking. SEM micrographs and FTIR spectra indicated that photodegradation started at the exposed side of the film and propagated through the polymer matrix after week 8. FTIR spectra also indicated that subsequent photooxidation processes took place. The reduction of molecular weight of the soil burial samples was much slower than that of the non-crosslinked portion of solar exposed film samples. The reduction of number average molecular weight of the non-crosslinked solar exposed samples followed a first order reaction, whereas the soil burial samples show a surface erosion biodegradation behavior. The relationship among total solar radiation, gel content and number average molecular weight indicated that an accumulated total solar radiation of 800 MJ/m2, reached in approximately 7 weeks at the exposure site, is required for PBAT mulch film integrity loss.  相似文献   
2.
Biodegradation and hydrolysis rate of aliphatic aromatic polyester   总被引:2,自引:0,他引:2  
The biodegradation and hydrolysis rates of an aliphatic aromatic copolyester were measured in manure, food, and yard compost environments and in phosphate buffer solution (pH = 8.0) and vermiculite at 58 °C. Mineralization, molecular weight reduction, and structural changes determined by DSC, FTIR, and 1H NMR were used as indicators of the biodegradation and hydrolysis rates. Poly(butylene adipate-co-terephthalate), PBAT, film biodegraded at distinctive rates in manure, food, and yard compost environments having different microbial activities. The highest biodegradation rate was found in manure compost, which had the highest CO2 emissions and lowest C/N ratio. The possible presence of extracellular enzymes in manure and food composts may facilitate the hydrolytic reaction since greater molecular weight reduction rates were observed in these composts. 1H NMR and thermal analysis revealed that, while PBAT is a semi-crystalline copolyester with cocrystallization of BT and BA dimers, the soft aliphatic domain (BA) and the amorphous region are more susceptible to hydrolysis and biodegradation than the rigid aromatic domain (BT) and the crystalline region.  相似文献   
3.
Aliphatic aromatic copolyester films, poly(butylene adipate-co-terephthalate) or PBAT, are susceptible to photodegradation, leading to main chain scission and crosslinking. The presence of crosslinked structures not only decreased the mechanical properties of the film due to embrittlement, but also hindered the biodegradation process by limiting access of water and microorganisms to the polymer chains. This has limited the use of PBAT for outdoor applications, such as mulch films. In this study, response surface methodology (RSM) was used to determine the optimal concentrations of carbon black (CB) and the chain breaking antioxidant butylated hydroxytoluene (BHT) for the design of mulch films that can prevent the formation of crosslinked structures from recombination of free radicals. An overlaid contour plot of suitable concentrations of CB and BHT for the formulation of mulch film for crop production in Michigan or regions with similar solar radiation was established using selection criteria of light transmission of less than 20%, final tensile strength of at least 6.35 MPa, maximum gel fraction of 0.30, and positive number average molecular weight reduction sensitivity in the early stage of degradation.  相似文献   
4.
An automatic direct measurement respirometric system was built, calibrated and tested to determine polymer biodegradation under simulated environmental conditions. The amount of carbon dioxide produced during biopolymer biodegradation was converted to percentage of mineralization, and used as an indicator of the polymer biodegradation. Poly(lactide) (PLA) bottles were used as the test material, and the results were compared with those from corn starch powder and poly(ethylene terephthalate) (PET) bottles. The respirometric system ran for more than 63 days without any user intervention, very stable and efficiently. At 63 days of exposure at 58±2 °C and 55±5% relative humidity, PLA, corn starch, and PET achieved 64.2±0.5%, 72.4±0.7%, and 2.7±0.2% mineralization, respectively. Based on ASTM D 6400 and ISO14855, PLA bottles qualify as biodegradable since mineralization was greater than 60%.  相似文献   
5.
Packaging waste accounted for 78.81 million tons or 31.6% of the total municipal solid waste (MSW) in 2003 in the USA, 56.3 million tons or 25% of the MSW in 2005 in Europe, and 3.3 million tons or 10% of the MSW in 2004 in Australia. Currently, in the USA the dominant method of packaging waste disposal is landfill, followed by recycling, incineration, and composting. Since landfill occupies valuable space and results in the generation of greenhouse gases and contaminants, recovery methods such as reuse, recycling and/or composting are encouraged as a way of reducing packaging waste disposal. Most of the common materials used in packaging (i.e., steel, aluminum, glass, paper, paperboard, plastics, and wood) can be efficiently recovered by recycling; however, if packaging materials are soiled with foods or other biological substances, physical recycling of these materials may be impractical. Therefore, composting some of these packaging materials is a promising way to reduce MSW. As biopolymers are developed and increasingly used in applications such as food, pharmaceutical, and consumer goods packaging, composting could become one of the prevailing methods for disposal of packaging waste provided that industry, governments, and consumers encourage and embrace this alternative. The main objective of this article is to provide an overview of the current situation of packaging compostability, to describe the main mechanisms that make a biopolymer compostable, to delineate the main methods to compost these biomaterials, and to explain the main standards for assessing compostability, and the current status of biopolymer labeling. Biopolymers such as polylactide and poly(hydroxybutyrate) are increasingly becoming available for use in food, medical, and consumer goods packaging applications. The main claims of these new biomaterials are that they are obtained from renewable resources and that they can be biodegraded in biological environments such as soil and compost. Although recycling could be energetically more favorable than composting for these materials, it may not be practical because of excessive sorting and cleaning requirements. Therefore, the main focus is to dispose them by composting. So far, there is no formal agreement between companies, governments and consumers as to how this packaging composting will take place; therefore, the main drivers for their use have been green marketing and pseudo-environmental consciousness related to high fuel prices. Packaging compostability could be an alternative for the disposal of biobased materials as long as society as a whole is willing to formally address the challenge to clearly understand the cradle-to-grave life of a compostable package, and to include these new compostable polymers in food, manure, or yard waste composting facilities.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号