首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
化学   12篇
数学   2篇
物理学   16篇
  2015年   1篇
  2013年   4篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有30条查询结果,搜索用时 46 毫秒
1.
2.
3.
4.
We present a second‐order finite difference scheme for approximating solutions of a mathematical model of erythropoiesis, which consists of two nonlinear partial differential equations and one nonlinear ordinary differential equation. We show that the scheme achieves second‐order accuracy for smooth solutions. We compare this scheme to a previously developed first‐order method and show that the first order method requires significantly more computational time to provide solutions with similar accuracy. We also compare this numerical scheme with other well‐known second‐order methods and show that it has better capability in approximating discontinuous solutions. Finally, we present an application to recovery after blood loss. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   
5.
6.
7.
The technique of ferromagnetic resonance at 23 GHz has been used to determine the first three anisotropy constants of pure Ni down to 4.2K. A temperature and orientation dependent linewidth has also been observed.  相似文献   
8.
X-ray reflectivity studies on Langmuir-Blodgett multilayer films of side-chain liquid crystal polymers are reported. The films have a high degree of lamellar order. The layer periodicity is independent of the type of monolayer deposition, implying a reorientation of the side group mesogens following the deposition process. X-ray reflectivity from thin films displays subsidiary maxima permitting a quantitative measure of the change in side-chain density between multilayer and monolayer. A unit cell density profile is calculated for thick films assuming a symmetric unit cell.  相似文献   
9.
Flavin coenzymes play a variety of roles in biological systems. This Perspective highlights the chemical versatility of flavins by reviewing research on five flavoenzymes that have been studied in our laboratory. Each of the enzymes discussed in this review [the acyl-CoA dehydrogenases (ACDs), CDP-6-deoxy-l-threo-d-glycero-4-hexulose-3-dehydrase reductase (E3), CDP-4-aceto-3,6-dideoxygalactose synthase (YerE), UDP-galactopyranose mutase (UGM), and type II isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2)] utilizes flavin in a distinct role. In particular, the catalytic mechanisms of two of these enzymes, UGM and IDI-2, may involve novel flavin chemistry.  相似文献   
10.
Many biologically active small‐molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号