首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   7篇
化学   57篇
力学   10篇
数学   2篇
物理学   9篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2001年   1篇
  1999年   1篇
  1997年   2篇
排序方式: 共有78条查询结果,搜索用时 0 毫秒
1.
Reduction of the representation of infrared spectra from coal samples by osculating polynomials of degree nine is discussed. The reduced representation contains polynomial coefficients of order zero to four. Mathematical models of the original spectra are obtained by linear combination of the coefficients. These compressed models are statistically correlated to coal properties, namely, volatile matter, fixed carbon, ash content, heating value, hydrogen, carbon, sulphur, nitrogen, and maximum vitrinite reflectance, and the results are compared with those previously obtained from second derivatives of the same spectra. The use of compressed data, while giving slightly better correlations for some of the properties, has the advantage of requiring less computational time.  相似文献   
2.
Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical. Multiconfiguration pair-density functional theory (MC-PDFT) provides a way to blend multiconfiguration wave function theory and density functional theory to quantitatively treat both near-degeneracy correlation and dynamic correlation in strongly correlated systems; it is more affordable than multireference perturbation theory, multireference configuration interaction, or multireference coupled cluster theory and more accurate for many properties than Kohn–Sham density functional theory. This perspective article provides a brief introduction to strongly correlated systems and previously reviewed progress on MC-PDFT followed by a discussion of several recent developments and applications of MC-PDFT and related methods, including localized-active-space MC-PDFT, generalized active-space MC-PDFT, density-matrix-renormalization-group MC-PDFT, hybrid MC-PDFT, multistate MC-PDFT, spin–orbit coupling, analytic gradients, and dipole moments. We also review the more recently introduced multiconfiguration nonclassical-energy functional theory (MC-NEFT), which is like MC-PDFT but allows for other ingredients in the nonclassical-energy functional. We discuss two new kinds of MC-NEFT methods, namely multiconfiguration density coherence functional theory and machine-learned functionals.

This feature article overviews recent work on active spaces, matrix product reference states, treatment of quasidegeneracy, hybrid theory, density-coherence functionals, machine-learned functionals, spin–orbit coupling, gradients, and dipole moments.  相似文献   
3.
Collisional-radiative atomic models are widely used to help diagnose experimental plasma conditions through fitting and interpreting measured spectra. Here we present the results of a code comparison in which a variety of models determined plasma temperatures and densities by finding the best fit to an experimental L-shell Kr spectrum from a well characterized, but not benchmarked, laser plasma. While variations in diagnostic strategies and qualities of fit were significant, the results generally confirmed the typically quoted uncertainties for such diagnostics of ±20% in electron temperature and factors of about two in density. The comparison also highlighted some model features important for spectroscopic diagnostics: fine structure was required to match line positions and relative intensities within each charge state and for density diagnostics based on emission from metastable states; an extensive configuration set was required to fit the wings of satellite features and to reliably diagnose the temperature through the inferred charge state distribution; and the inclusion of self-consistent opacity effects was an important factor in the quality of the fit.  相似文献   
4.
Molecules containing the guanidinic nuclei possess several pharmacological applications, and knowing the preferred isomers of a potential drug is important to understand the way it operates pharmacologically. Benzoylguanidines were synthesized in satisfactory to good yields and characterized by NMR, Electrospray Ionization Mass Spectrometry (ESI‐MS) and Fourrier Transform InfraRed Spectroscopy techniques (FTIR). E/Z isomerism of the guanidines was studied and confirmed by NMR analysis in solution (1H‐13C Heteronuclear Single Quantum Coherence (HSQC) and Heteronuclear Multiple‐Bond Correlation (HMBC), 1H‐15N HMBC, 1H‐1H Correlation Spectroscopy (COSY) and Nuclear Overhauser Effect Spectroscopy (NOESY) experiments) at low temperatures. Compounds with p‐Cl and p‐Br aniline moiety exist mainly as Z isomer with a small proportion of E isomer, whereas compounds with p‐NO2 moiety showed a decrease in proportion of isomer Z. The results are important for the application of these molecules as enzymatic inhibitors. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
5.
We present a supercritical radiative shock experiment performed with the LULI nanosecond laser facility. Using targets filled with xenon gas at low pressure, the propagation of a strong shock with a radiative precursor is evidenced. The main measured shock quantities (electronic density and propagation velocity) are shown to be in good agreement with theory and numerical simulations.  相似文献   
6.
7.
8.
Surface pressure (π)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-α-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from π-A curves applying the additivity rule by calculating the excess free energy of mixture (ΔG(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes.  相似文献   
9.
Solutions of aza-Morita-Baylis-Hillman (aza-MBH) reactions were directly monitored by ESI(+)-MS(/MS) spectrometry to obtain information on their mechanism. A unique bis-sulfonamide intermediate was intercepted and characterized and, based on this novel species, a mechanism that rationalizes the uniqueness of aza-MBH reactions is proposed.  相似文献   
10.
Opacity is an important ingredient of the evolution of stars. The calculation of opacity coefficients is complicated by the fact that the plasma contains partially ionized heavy ions that contribute to opacity dominated by H and He. Up to now, the astrophysical community has greatly benefited from the work of the contributions of Los Alamos [1], Livermore [2], [2a] and [2b] and the Opacity Project (OP) [3]. However unexplained differences of up to 50% in the radiative forces and Rosseland mean values for Fe have been noticed for conditions corresponding to stellar envelopes. Such uncertainty has a real impact on the understanding of pulsating stellar envelopes, on the excitation of modes, and on the identification of the mode frequencies. Temperature and density conditions equivalent to those found in stars can now be produced in laboratory experiments for various atomic species. Recently the photo-absorption spectra of nickel and iron plasmas have been measured during the LULI 2010 campaign, for temperatures between 15 and 40 eV and densities of ∼3 mg/cm3. A large theoretical collaboration, the “OPAC”, has been formed to prepare these experiments. We present here the set of opacity calculations performed by eight different groups for conditions relevant to the LULI 2010 experiment and to astrophysical stellar envelope conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号